期刊文献+

一类离散正交分段多项式及其应用

A class of discrete orthogonal piecewise polynomials and its applications
原文传递
导出
摘要 在离散的几何图形应用中,经常需要正交表示有突变或间断的几何图形,若采用连续的正交函数系(如三角函数系)必然会出现Gibbs现象,而用间断的Walsh函数系表示因其收敛速度慢而效果欠佳。从Tchebichef离散正交多项式出发,构造了一类分段点(N-1)/2p处的离散正交分段多项式基(discrete piecewise tchebichef basis,DPTB)。该类基函数既有平滑过渡的部分,又有间断突变的部分,因而可以用它较准确地表示由离散分段多项式建模的几何图形。给出了正交基的性质与构造实例。最后通过离散信号逼近仿真实验验证了该算法的可行性,实验结果表明该分段离散正交多项式基表示分段跳跃突变信号的结果明显优于离散余弦基。 For computer geometric figures representation,there is Gibbs phenomenon if continuous basis functions are used to approximate the discontinuous signals with breakpoints.The rate of convergence is very slow if Walsh basis functions are used to represent the discontinuous signals.Thus a class of discrete piecewise orthogonal polynomials basis(DPTB) was constructed from discrete orthogonal Tchebichef polynomials,whose breakpoints appear at(N-1)/2p.Since this class of basis consists of smooth and piecewise polynomials parts,finite discrete geometric figures with breakpoints at(N-1)/2p can be precisely expressed by using the constructed orthogonal basis.Then its properties and a set of explicit basis expressions with degree k(k=1,2,3) are given.Finally,the new discrete orthogonal base is used to decompose and reconstruct the signal with breakpoints.The experimental results show that this method outperforms the algorithm based on cosine orthogonal basis for expressing the signals with breakpoint.
出处 《山东大学学报(工学版)》 CAS 北大核心 2011年第2期29-35,共7页 Journal of Shandong University(Engineering Science)
基金 北京市教育委员会科技发展计划面上资助项目(KM200910009001)
关键词 分段多项式 离散正交多项式基 WALSH函数 几何图形 piecewise polynomials discrete orthogonal polynomials basis Walsh functions geometry figure
  • 相关文献

参考文献8

  • 1FENG Yuyu, QI Dongxu. A sequence of piecewise orthogonal polynomials[ J]. SlAM Journal of Mathematics, 1984, 15(4): 834-844.
  • 2齐东旭,陶尘钧,宋瑞霞,马辉,孙伟,蔡占川.基于正交完备U-系统的参数曲线图组表达[J].计算机学报,2006,29(5):778-785. 被引量:24
  • 3CAI Zhanchuan, MA Hui, SUN Wei, et al. Analysis of frequency spectrum for geometric modeling in digital ge- ometry [ C ]//Wavelet Analysis and Applications, Basel, Switzerland: Birkh~iuser Verlag Basel, 2007 : 525-542.
  • 4ALPERT B K. A class of bases in L2 for the sparse representation of integral operators [ J ]. SlAM Journal of Mathematics, 1993, 24( 1 ) : 246-262.
  • 5SELESNICK I W. The slantlet transform [ J ]. IEEE Transactions on Signal Processing, 1999, 47 ( 5 ) : 1304- 1313.
  • 6SONG Ruixia, MA Hui, WANG Tianjun, et al. Complete orthogonal V-system and its applications [ J ]. Communications on Pure and Applied Analysis, 2007, 6 (3) : 853-871.
  • 7MICCHELLI C A, YU Y. Using the matrix refinement equation for the construction of wavelets on invariant sets [J]. Applied and Computional Harmonic Analysis, 1994, 1 : 391-401.
  • 8NIKIFOROV A F, SUSLOV S K, UVAROV V B. Classical orthogonal polynomials of a discrete variable [ M ]. New York: Springer Verlag Publisher, 1991.

二级参考文献7

  • 1李介谷 等.图像处理技术[M].上海交通大学出版社,1990..
  • 2Foley J.D.et al.Computer Graphics,Principles and Practice.2nd Edition.Beijing:Engineering Industry Press,2002
  • 3齐东旭 冯玉瑜.关于Fourier—U级数的收敛性[J].中国科技大学学报,:7-17.
  • 4齐东旭 冯玉瑜.关于正交完备系{U}[J].吉林大学自然科学学报,1984,(2):21-31.
  • 5Feng Yu-Yu,Qi Dong-Xu.A sequence of piecewise orthogonal polynomials.SIAM Journal on Mathematical Analysis,1984,15(4):834~844
  • 6Song Wei,Yan Wei-Qi,Qi Dong-Xu.Digital watermark image embedding based on U-system.In:Proceedings of the 6th International Conference on Computer Aided Design & Computer Graphics,1999,3(12):893~899
  • 7丁玮,闫伟齐,齐东旭.基于U系统的数字图象水印技术[J].中国图象图形学报(A辑),2001,6(6):552-557. 被引量:10

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部