期刊文献+

基于轮廓波变换的隐写分析算法 被引量:1

A contourlet transform-based steganalysis algorithm
原文传递
导出
摘要 基于轮廓波变换对图像表示的优良性质,提出了一种基于轮廓波变换的通用隐写分析算法。综合了轮廓波变换高频子带系数、高频子带噪声残差、高频子带特征函数高阶统计模型,利用支持向量机(support vector ma-chine,SVM)对JSteg、Jphide、F5、Outguess等隐写算法的不同嵌入率进行分类和检测。实验结果表明基于轮廓波变换隐写分析算法对大部分隐写算法具有优良的探测性能。与传统的小波变换相比,轮廓波变换能够更有效地捕捉到图像因密信的嵌入而引起的细微变化。 A universal steganalysis method was proposed by using the superior property of the contourlet transform with representation of an image.It merged the highorder statistics model of coefficient moments statistics,noise residual moments statistics,and characteristic function moments in the high frequency subband of the contourlet domain.At the same time,a nonlinear support vector machine(SVM) classifier was used to classify JSteg,Jphide,F5 and Outguess with different embedding rates.Experimental results showed that the proposed method has the superion discriminative performance for most of steganography methods.Compared with the classical wavelet,the contourlet transform has better detection effect to capture slight differences during embedding messages.
出处 《山东大学学报(工学版)》 CAS 北大核心 2011年第2期75-79,90,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(60772115 60572140)
关键词 隐写分析 轮廓波变换 统计特征 steganalysis contourlet transform statistics characteristic
  • 相关文献

参考文献19

  • 1AVCIBAS I, MEMON N D, SANKUR B. Steganalysis of watermarking techniques using image quality metrics [ C ]//Proceedings of Security and Watermarking of Multimedia:Contents II. San Jose, USA: SPIE Press, 2001: 523-531.
  • 2FARID H, LYU S. Detecting hidden messages using higher-order statistics and support vector machines [ C ]// 5^th International Workshop on Information Hiding. New York, USA:Springer, 2001: 340-354.
  • 3LYU S, FARID H. Steganalysis using color wavelet statistics and one-class support vector machines [ C ]//Processing of SPIE Electronic Imaging, Security, Steganography and Watermarking of Multimedia. Contents VI. San Jose, CA: SPIE Press, 200:4: 35-45.
  • 4HARMSEN J J, PEARLMAN W A. Steganalysis of additive noise modelable information hiding [ C ]//Processing of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia: Contents V. San Jose, USA: SPIE Press, 2003 : 131-142.
  • 5SHI Y Q, XUAN G. Image Steganalysis based on moments of characteristic functions using wavelet decomposition, prediction error-image, and neural network [ C ]// Proceedings of IEEE International Conference on Multimedia and Exposition 2005. Amsterdam, Netherlands:IEEE Press, 2005: 6-8.
  • 6WANG Y, MOULIN P. Optimized feature extraction for learning-based image steganalysis [ J ]. IEEE Transaction on Information Forensics and Security, 2007, 2 ( 1 ) : 31 - 45.
  • 7LI B, HUANG J, SHI Y O. Textural features based universal steganalysis [ C ]//Proceedings of 2008 SPIE IS&T Electronic Imaging. Toulouse, France : SPIE Press, 2008 : 1-12.
  • 8SAJEDI H, JAMZAD M. A steganalysis method based on contourlet transform coefficients [ C ]//2008 Intelligent Information Hiding and Multimedia Signal Processing. Harbin, China: IEEE Press ,2008 : 245-248.
  • 9KHAN Z, MANSOOR A B. A new hybrid DCT and contourlet transform based JPEG image steganalysis technique [J].Image Analysis, 2009(1): 321-330.
  • 10DO M N, VETTERLI M. The contoudet transform: an efficient directional multiresolution image representation [J].IEEE Transaction on Image Processing,2005,14 (12) : 2091-2106.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部