摘要
在Hausdorff局部凸拓扑向量空间中考虑约束集值优化问题的强有效性.在内部锥类凸假设下,利用凸集分离定理,得到了强有效解的Lagrange乘子定理。
The set-valued optimization problem with constraints is considered in the sense of strong efficiency in Hausdorff locally convex vector topological spaces.Under the assumption of the ic-cone-convexlikeness by applying separation theorem for convex sets,the Lagrange multiplier thoerems for strong efficient solution is established.
出处
《宜春学院学报》
2011年第4期20-21,共2页
Journal of Yichun University
基金
江西省自然科学基金(0611081)
关键词
内部锥类凸
集值映射
强有效解
LAGRANGE乘子定理
ic-cone-convexlikeness
set-valued functions
strong efficient solution
Lagrange multiplier thoerem