期刊文献+

k阶循环矩解调用于滚动轴承故障特征提取 被引量:2

Fault Feature Extracting for Rolling Bearing Based on kth-Order Cyclic Moment
下载PDF
导出
摘要 针对滚动轴承早期故障诊断中故障特征信号提取问题,提出了一种基于k阶循环矩的故障特征信号解调方法。在循环矩理论基础上,首先分析了时变调幅信号的k阶循环矩解调原理和方法;讨论了k阶循环矩的频率特性;得出了k阶循环矩不仅能解调出调制频率,还能解调出载波频率的规律;给出了k阶循环矩的计算方法,并利用仿真信号验证了该方法的有效性;最后通过滚动轴承振动信号进行了分析。结果表明,该方法能有效提取滚动轴承早期故障特征,识别故障类型,具有较高的可信度。 An approach based on kth-order cyclic moment was presented to deal with the fault feature extracting of the rolling bearing in incipient fault diagnosis.Firstly,based on cyclic statistics theory,the demodulation characteristics of the kth-order cyclic moment for time-varying amplitude modulation signal was studied,and the frequency characteristics were discussed.It was pointed out that kth-order cyclic moment could demodulate out the modulation frequency information,and obtain the carrier wave frequency information,and then the calculation methods were given.The analysis of the simulated signal demonstrates that the kth-order cyclic moment has quite good demodulation ability.An experimental investigation was performed to enable an assessment of the accuracy level.The result shows that the method based on kth-order cyclic moment has excellent reliability to early recognition of bearing failure.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2011年第2期139-143,262,共5页 Journal of Vibration,Measurement & Diagnosis
基金 流体传动与控制国家重点实验室开放基金资助项目
关键词 故障诊断 循环矩 解调分析 轴承 fault diagnosis cyclic moment demodulation analysis bearing
  • 相关文献

参考文献8

二级参考文献29

共引文献104

同被引文献28

  • 1林京.基于最大似然估计的小波阈值消噪技术及信号特征提取[J].仪器仪表学报,2005,26(9):923-927. 被引量:27
  • 2Wang Y F, Kootsookos P J. Modeling of low shaft speed bearing faults for condition monitoring[J]. Me- chanical Systems and Signal Processing,1998,12 (3): 415-426.
  • 3Hong Hoonbin, Liang Ming. Fault severity assess- ment for rolling element bearings using the Lempel- Ziv complexity and continuous wavelet transform [J]. Journal of Sound and Vibration, 2009, 320 (1) 452- 468.
  • 4Tandon N, Choudhury A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect[J]. Journal of Sound and Vibration,1997, 205(3): 275-292.
  • 5Peng Z K,Peter W,Tse F L C. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J]. Mechanical Systems and Signal Processing,2005, 19 (5): 974-988.
  • 6Khalid F A R, Asok R, Ramachandran K P. Applica- tion of the laplace wavelet combined with ANN for rolling bearing fault diagnosis [J]. ASME, Journal of Vibration and Acoustics, 2008, 130(5): 1-9.
  • 7McFadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing [J]. Journal of Sound and Vibration, 1984, 96 (1):69-82.
  • 8Liu Xianhua, Randall B R. Blind separation of internal combustion engine vibration signals by a deflation method [J]. Mechanical Systems and Signal Process- ing,2008,22 (5):1082-1091.
  • 9The Case Western Reserve University Bearing Data Center Website. Bearing data center seeded fault test data EEB/OL]. 1-2010-10-17]. Http: http: // www. eecs/cwru/edu/laboratory/bearing.
  • 10Nikolaou N G, Antoniadis I A. Demodulation of vi- bration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets[J].Mechanical Systems and Signal Processing, 2002, 16 (4):677-694.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部