期刊文献+

自适应蚁群算法在TSP问题中的应用

Application of Self-adaptive Ant Colony Optimization in TSP
下载PDF
导出
摘要 针对传统的蚂蚁算法容易出现早熟和停滞现象,提出了一种自适应蚂蚁算法(Self-Adaptive Ant Colony Algorithm,SAACA)并选择典型TSP问题进行实验.结果表明:改进的蚁群算法具有更好的搜索全局最优解的能力以及更好的稳定性和收敛性. A new adaptive is proposed for the traditional ant algorithm easily appearing precocious and static behavior phenomenon in this paper.And the traditional parameter of pheromone of ant colony algorithm is self-adaptive,the results are indicated that the new adaptive ant colony algorithm has a better ability to search the global optimal solution and hase better stability and astingency..
出处 《湖南城市学院学报(自然科学版)》 CAS 2011年第1期54-57,共4页 Journal of Hunan City University:Natural Science
关键词 蚁群算法(ACA) 自适应 信息素 模拟退火搜索 ACA self-adaptive pheromone simulated anneal searching
  • 相关文献

参考文献11

  • 1Garey M R, Graham R L, Johnson D S. Some NP -complete geometric problems[C]// 8th ACM Symposium on the Theory of Computing. New York: Association for Computing Machinery, 1976: 10-22.
  • 2Michal E Z, FOGEL D B. How to solve it: ModemHeuristick[M]. BerlinHeidelberg: Springer2Verlag, 2000.
  • 3Stutzl E, Hoos H H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889-914.
  • 4段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2006:33-35.
  • 5焦李成,杜海峰,刘芳,等.免疫优化计算,学习与识别[M].北京;科学出版社,2007:93-104,133-143.
  • 6Kirkpat R S, Gelatt J R, Vecchi M P. Optimization by simulated annealing[J]. Journal of statistical, 1983, 34(516): 975-986.
  • 7Shi Y, Eberhart C. Particle Swarm Optimization: development, applications and resources[C]//Proc Congress on Evolutionary Computation 2001. Piscataway: IEEE Press, 2001:81-86.
  • 8刘波,蒙培生.采用基于模拟退火的蚁群算法求解旅行商问题[J].华中科技大学学报(自然科学版),2009,37(11):26-30. 被引量:19
  • 9刘勇,马欣,申志兵.基于改进蚁群算法的应急救援最优路径选择[J].工业安全与环保,2009,35(11):56-57. 被引量:11
  • 10张晓玲,黄力.融入遗传算子的蚁群算法求解TSP问题[J].广西民族大学学报(自然科学版),2009,15(3):81-87. 被引量:9

二级参考文献31

  • 1李卓君.改进的蚁群算法在VRP中的应用研究[J].武汉商业服务学院学报,2006,20(1):56-59. 被引量:1
  • 2陈旭,宋爱国.蚂蚁算法与免疫算法结合求解TSP问题[J].传感技术学报,2006,19(2):504-507. 被引量:7
  • 3刘玉霞,王萍,修春波.基于模拟退火策略的逆向蚁群算法[J].微计算机信息,2006,22(12S):265-267. 被引量:10
  • 4MICHALEWICZ Z, FOGEL D B. How to solve it: Modern Heuristick[M]. Berlin Heidelberg.. Springer-Verlag, 2000.
  • 5STUTZLE T, HOOS H H. Max-rain ant system[J]. Future Generation Computer Systems, 2000,16(8) :889--914.
  • 6焦李成,杜海峰,刘芳,等.免疫优化计算,学习与识别[M].北京;科学出版社,2007:93-104,133-143.
  • 7QIN L, CHEN Y X, LUO J L,et al. A diversity guaranteed ant colony algorithm based on immune strategy[C]//Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences IMSCCS'06 June20- 24, 2006, Hanzhou,China, IEEE Comupter Society 2006 (2) : 217 -- 223.
  • 8EYCKELHOF C and SNOEK M. Ant systems for dynamic TSP-ants caught in a traffic jam[C]//Ant Algorithms-Third International Workshop, ANTS Z002, September 12-14. 2002, Brussels, Belgium: 88--99.
  • 9Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies. Proceedings of the 1st European Conference on Artificial Life, 1991,134 - 142.
  • 10Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behavior. Nature,2000,406(6):39-42.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部