期刊文献+

疲劳驾驶视频监测中的快速人脸定位方法 被引量:3

Quick face detection in video based driver fatigue surveillant
下载PDF
导出
摘要 为了满足基于计算机视觉的疲劳驾驶监测中眼睛定位的实时性和准确性的需要,提出了疲劳驾驶视频监测背景下的快速人脸定位方法。依据疲劳驾驶监测中获取的视频背景相对固定的特点,将背景减除法引入到驾驶员人脸检测当中,与灰度投影法相结合实现快速人脸定位。实验表明此方法快速、有效,且对光照变化以及驾驶员人脸姿态的变化具有较好的鲁棒性。 In order to meet the vision in eye fatigue driving monitoring based on computer and real-time positioning accuracy needs, we present an approach of quick face detection in the background of fatigue driving. According to the character that the background in the video is almost fixed, the paper introduce the background subtraction and gray-level projection to detect the face quickly. Experiments demonstrated that our method is real-time, and robust under variable lighting conditions and various face orientations.
出处 《电子设计工程》 2011年第8期179-181,共3页 Electronic Design Engineering
关键词 疲劳驾驶 人脸定位 背景减除法 灰度投影 drowsy driving face detection background subtraction gray-level projection
  • 相关文献

参考文献5

  • 1Allen R W, Stein A C, Miller J C. Performance testing as a determinant of fitness for duty [C]//Paper presented at the Society for Automotive Engineers Aerotech conference, Warrendale, PA,USA. 1990:437.
  • 2Khardi S,Vallet M. Drowsiness of the driver: EEG and vehicle parameters interaction[C]//In International Technical Conference on the Enhanced Safety of Vehicles, 1994.
  • 3周玉彬,俞梦孙.疲劳驾驶检测方法的研究[J].医疗卫生装备,2003,24(6):25-28. 被引量:55
  • 4ZHU Zhi-wei, Jl Q. Robust real-time eye detection and tracking under variable lighting conditions and various face orientations [J]. Computer Vision and Image Understanding, 2005(98):124-154.
  • 5Dinges D F, Mallis M, Maislin G,et al. Final report: evaluation of techniques for ocular measurements as an index of fatigue as the basis for alertness management[R]. 1998.

二级参考文献12

  • 1Jane C.Stutts,Jean W.Wilkins,Bradley V.Vaughn. Why Do People Have Drowsy Driving Crashes.AAA Foundation for Traffic Safety,1999.
  • 2Anneke Heitmann, Rainer Guttkuhn ,Acacia Aguirre,et al. Technologies for the Monitoring and Prevention of Driver Fatigue. PROCEEDINGS of the First International Driving Symposium on Human Factor in Driver Assessment,Training and Vehicle Design.
  • 3Merritt SL,Schnyders,H.C.Circadian aspectsofpupillaryunrest reflecting daytime sleepiness.Sleep Research Online, 1999,2(Sup 1):773.
  • 4Grace, R., Benjamin, A. L., Application of a Heavy Vehicle Drowsy Driver Detection System. Proceedings of the SAE International Truck & Bus Meeting and Exposition, 1999.15-17.
  • 5Kauichi Shiomi,Ph.D. Fatigue and Drowsiness Predictor for Pilots and Air Traffic Controllers:45th Annusl ATCA Conferencer, 2000.22-26.
  • 6Kithil Philip W., Jones Roger D.John MacCuish. Development of Driver Alertness Detection System Using Overhead Capacitive Sensor Array. SAE Technical Paper Series 982292, SAE International,1998.
  • 7Dinges David F. ,Ph.D.,Grace,Richard Ph.D. PERCLOS:A Valid Psychophysiological Measure of Alertness AsAssessed by Psychomotor Vigilance. Federal Highway Administration, Office of Motor Carriers,1998.
  • 8Grace R.,Byrne V.E., Legrand J.M.,et al. A Drowsy Driver Detection System for Heavy Vehicles. Proceedings of the Digital Avionics Systems Conference (DASC), 1998.
  • 9Louis Tijerina,Mark Gleckler,Duane Stoltzfus.A Preliminary Assessment of Algorithms for Drowsy and Inattentive Driver Detection on the Road.DOT HS808(TBD),I999.
  • 10Evangelos Bekiaris,Kees Wevers,AngelosAmiditis.ADVANCED DRIVER MONITORING-THE AWAKE PROJECT,2001.

共引文献54

同被引文献23

  • 1黄泽兵,赵群飞,喻再光.一种用于数码相机自拍系统的人体检测方法[J].计算机应用,2006,26(1):160-162. 被引量:3
  • 2方帅.计算机智能视频监控系统关键技术研究[D].2005,2(1):88-89.
  • 3Yang Q, Siemionow V, Yao W, et al.. Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2010, 18(2): 97-106.
  • 4Zhang Y, Lu B, Su L, et al.. Multi-recognition algorithms of human′s mental fatigue state based on EEG[C]. IEEE Fifth International Conference on Advanced Computational Intelligence, 2012: 1180-1184.
  • 5Luo X, Hu R, Fan T. The driver fatigue monitoring system based on face recognition technology[C]. Intelligent Control and Information Processing (ICICIP), 2013: 384-388.
  • 6Xie J F, Xie M, Zhu W, et al.. Driver fatigue detection based on head gesture and PERCLOS[C]. 2012 International Conference on Wavelet Active Media Technology and Information Processing. 2012: 128-131.
  • 7Zhao C, Zhang X, Zhang B, et al.. Driver′s fatigue expressions recognition by combined features from pyramid histogram of oriented gradient and contourlet transform with random subspace ensembles[J]. Intelligent Transport Systems, 2013, 7(1): 36-45.
  • 8Lee B G, Chung W Y. Driver alertness monitoring using fusion of facial features and bio- signals[J]. Sensors Journal, 2012, 12(7): 2416-2422.
  • 9Wu Q, Sun B, Xie B, et al.. A PERCLOS-based driver fatigue recognition application for smart vehicle space[C]. Third International Symposium on Information Processing, 2010: 437-441.
  • 10Dong H Z, Xie M. Real- time driver fatigue detection based on simplified landmarks of AAM [C]. International Conference on Apperceiving Computing and Intelligence Analysis, 2010: 363-366.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部