期刊文献+

基于清洁度的冷凝器污垢监测方法研究 被引量:1

Condenser Fouling Monitoring Methods Based on Cleanliness
下载PDF
导出
摘要 衡量冷凝器运行状况的污垢系数容易受到多种因素的影响,故以污垢系数为基础来判断冷凝器水侧壁管脏污的情况,会产生很大的误差.本文提出清洁度的定义,从而将冷凝器汽侧空气量、水管壁的污垢程度、冷凝器管束布置系数等因素对凝汽器总体传热系数的影响分离开来,能够更准确地诊断凝汽器的污垢程度,为凝汽器的合理清洗提供依据.实验数据表明,当冷凝器的运行出现以下变化如冷凝管堵塞、自动清洗装置停运、空气漏入量较大时,清洁度能够取得比T-S模型、热阻法、RBF神经网络更精确的测量结果,对冷凝器的高效运行具有重要的工程意义. Fouling coefficient is an important measure parameter of condenser performance,but it is affected by multi-factors,therefore judging the condenser water side of tube walls fouling based on coefficient would have a significant error.So this paper proposed the concept of degree of cleanliness,which allows us to analyze the influence of the air accumulated on the steam side、the fouling on condenser water side of tube walls、and the tube bundle coefficient of condenser on the overall heat transfer coefficient of the condenser respectively.It can diagnose the condenser fouling more accurately and provide a basis for scheduling reasonable cleaning.Experimental results show the method can be more reliable than the T-S fuzzy model,thermal resistance method,RBF neural network model when the condenser pipe blockage or a larger amount of air leakage into the condenser or condenser operating mode parameters change rapidly.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期36-40,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(60775047) 国家863计划资助项目(2007AA04Z244 2008AA04Z214) 湖南省自然科学基金资助项目(10JJ5067)
关键词 冷凝器 污垢监测 清洁度 管束布置 汽侧空气量 condenser fouling monitoring cleanliness tube bundle coefficient steam side with air accumulated
  • 相关文献

参考文献6

二级参考文献13

共引文献62

同被引文献26

  • 1侯迪波,杨丽明,周泽魁.基于模糊神经网络的周期性结垢预测方法研究[J].浙江大学学报(工学版),2004,38(3):307-311. 被引量:8
  • 2杨善让,徐志明,孙灵芳,王升龙,张海林,王建国,翟国冬.污垢热阻动态模拟自动监测装置及其应用[J].工程热物理学报,2001,22(S1):149-152. 被引量:19
  • 3邢晓凯,马重芳,陈永昌,宋磊.一种用于污垢监测的温差热阻新方法[J].石油大学学报(自然科学版),2004,28(5):70-73. 被引量:4
  • 4杨文忠,周本省.冷却水系统中沉积物的现场监测[J].腐蚀与防护,1996,17(2):91-96. 被引量:2
  • 5Afgan N H,Carvalho M G. Knowledge-base Expert Sys- tem for Fouling Assessment of Industrial Heat Ex- changers [ J ]. Applied Thermal Engineering, 1996,16 ( 3 ) : 203 - 208.
  • 6Sylvain L, Stephane L. Online Fouling Detection Elec- trical Circulation Heaters Using Neural Networks [ J ]. Heat and Mass Transfer,2003,46 ( 13 ) : 2445 N 2457.
  • 7Prieto M M, Montames E, Menendez O. Power Plant Condenser Performance Forecasting Using a Non-fully Connected Artificial Neural Network [ J ]. Energy, 2001,26(1) :65 -79.
  • 8Khan M S,Zubair S M,Budair M O,et al. Fouling Re- sistance Model for Prediction of CaCO3 Sealing in AI- SI 316 Tubes [ J ]. Heat and Mass Transfer, 1996,32 (1/2) :73 -79.
  • 9Budair M O, Khan M S, Zubair S M, et al. CaCO3 Scal- ing in AI-S1316 Stainless Steel Tubes-Effect of Thermal and Hydraulic Parameters on the Induction Time and Growth Rate[ J ]. Heat and Mass Transfer, 1998,34 ( 2/ 3) :163 - 170.
  • 10Zubair S M, Sheikh A K, Shaik M N. A Probabilistic Approach to the Maintenance of Heat-Transfer Equip- ment Subject to Fouling[ J]. Energy, 1992,17 ( 8 ) :769 -776.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部