期刊文献+

交互式动态影响图及其精确求解算法 被引量:1

Interactive dynamic influence diagrams and exact solution algorithm
下载PDF
导出
摘要 为了表示部分可观察马尔可夫环境下,多Agent决策中各Agent之间的动态结构关系,对影响图(IDs)在结构和时间上进行扩展,形成一种能够对其他Agent建模的决策模型:交互式动态影响图(I-DIDs)。I-DIDs是不确定环境下多Agent进行序贯决策的图模型。该模型的解是在对其Agent行为概率分布的预测下提供给该Agent的最优决策,能更有效地解决多Agent的决策问题。但I-DIDs状态空间太大,Agents候选模型空间随着时间片的增加成指数级增长,使计算变得复杂。因此,提出了一种基于行为等价的最小化模型集合的方法,通过限制模型增长来缓解模型空间不断扩大的趋势,以达到简化计算的目的。在模型实例上的仿真实验结果显示了该算法的有效性。 To represent the dynamic relationship between agents in multi-agent Markov decision process with partially observable settings shared by other agents,the interactive dynamic influence diagrams(I-DIDs) were presented by extending influence diagrams(IDs) over time and structure.I-DIDs are graphical models for sequential decision making in partially observable setting shared by other agents.It may be used to compute the policy of an agent given its belief as the agent acts and observes in the setting. Exact algorithms for solving I-DIDs demand the solutions of possible models of the agents and then update all models at every time step.The space of other models grows exponentially with the number of time steps,increasing the computational complexity.Thus an exact solution of I-DIDs based on minimal sets was presented by reducing the space of other agents′ possible models and updating the selected models,thereby the computational complexity was simplified.Finally,model instances were given.The experimental results show the validity of the algorithm.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2011年第2期119-124,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60975052)
关键词 多AGENT决策 交互式动态影响图 行为等价 最小模型更新集 multi-Agent decision interactive dynamic influence diagrams(I-DIDs) behaviorally equivalent minimal updating sets
  • 相关文献

参考文献8

  • 1HOWARD R A, MATHESON J E. Influence diagrams[J]. Readings on the Principle and Application of Decision Analysis, 1984,11 (2) : 719-762.
  • 2KOLLER D, MILCH B. Multi-agent influence diagrams for representation and solving games[J]. Games and Economic Behavior, 2003,45(1) : 181-121.
  • 3GAL Y, PFEFFER A. A language for modeling agent's decision-making processes in games[C]. Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS' 03,2003.
  • 4姚宏亮,王浩,张佑生,俞奎.多Agent动态影响图及其概率分布的近似方法[J].模式识别与人工智能,2007,20(4):525-532. 被引量:2
  • 5POLICH K,GMYTR S P. Interactive dynamic influence diagrams [C]. International Conference on Autonomous Agents Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS' 07, 2007.
  • 6GMYTRASIEWICZ P, DOSHI P. A framework for sequential planning in multi-agent settings[J]. Journal of Artificial Intelligence Research, 2005(24):49- 79.
  • 7DOSHI P, ZENG Yi-feng, CHEN Qiong-yu. Graphical models for online solutions to interactive POMDPs [C]. International Conference on Autonomous Agents Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. New York :ACM, 2007.
  • 8DOSHI P,ZENG Yi-feng, CHENG Qiong-yu. Graphical models for interactive POMDPs: representation and solutions[J]. Autonomous Agents and Multi-Agent Systems, 2009,18 (3) : 376-416.

二级参考文献17

  • 1王红卫,李琛,刘会新.马尔可夫决策过程复杂性的熵测度[J].控制与决策,2004,19(9):983-987. 被引量:10
  • 2Oliver N M, Rosario B, Pentland A P. A Bayesian Computer Vision System for Modeling Human Interactions. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8): 831-843
  • 3Boutilier C, Poole D. Computing Optimal Policies for Partially Observable Decision Processes Using Compact Representations // Proc of the 13th National Conference on Artificial Intelligence. Portland, USA, 1996:1168-1175
  • 4Barto A G, Mahadevan S. Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems, 2003, 13(1/2): 41-77
  • 5Dagum P, Luby M. Approximating Probabilistic Inference Using Bayesian Networks Is NP-Hard. Artificial Intelligence, 1993, 60(1): 141-153
  • 6Howard R A, Matheson J E. Influence Diagrams. Readings on the Principles and Applications of Decision Analysis, 1984, 11 (2) : 719-762
  • 7Koller D, Milch B. Multi-Agent Influence Diagrams for Representing and Solving Games. Games and Economic Behavior, 2003, 45(1): 181-221
  • 8Gal Y, Pfeffer A. A Language for Modeling Agents Decision Making Processes in Games // Proc of the 2nd International Joint Conference on Autonomous Agents and Multiagent Sys terns. Melbourne, Australia, 2003: 265-272
  • 9Boyen X, Kollen D. Tractable Inference for Complex Stochastic Processes // Proc of the 14th Annual Conference on Uncertainty in Artificial Intelligence. Madison, USA, 1998:33-42
  • 10Frick M, Groiie M. Deciding First-Order Properties of Locally Tree-Decomposable Graphs. Journal of the ACM, 2001, 48(6):1184-1206

共引文献1

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部