期刊文献+

基于最小二乘支持向量机的大肠癌K-ras基因突变预测

Least squares support vector machine-based prediction of K-ras mutations in colorectal cancers
下载PDF
导出
摘要 目的探讨利用最小二乘支持向量机模型对大肠癌K-ras基因突变进行预测的可行性。方法首先采用测序法检测90例大肠癌患者癌组织K-ras基因突变情况,继而选取特征变量用最小二乘支持向量机模型进行预测并与测序结果进行比较。结果重复100次的最小二乘支持向量机模型预测发现,训练集的准确率为100%,方差为0;检验集的准确率为79.4%,方差为4.51。结论应用最小二乘支持向量机预测模型预测大肠癌K-ras基因突变是可行的,有助于指导临床诊断、治疗和评价预后。 Objective To evaluate the feasibility of least squares support vector machine(LS-SVM) to predict the K-ras mutations in colorectal cancers.Methods Direct sequencing was first applied to detect the K-ras mutations in 90 colorectal cancers.The LS-SVM model was then constructed to predict the K-ras mutations in these colorectal cancers using selected characteristic variables for 100 times,compared with the direct sequencing results.Results The accuracy and the variance for training atlas were 100% and 0,respectively,while the accuracy and the variance for test atlas were 79.4% and 4.51,respectively.Conclusion LS-SVM is reliable for predicting the K-ras mutations in colorectal cancers,which would provide guidance for clinical diagnosis,therapy,and prognosis.
出处 《山西医药杂志(上半月)》 CAS 2011年第4期339-340,共2页 Shanxi Medical Journal
基金 辽宁省教育厅基金(L2010618)
关键词 肠肿瘤 预测 K-RAS基因 最小二乘支持向量机 Intestinal neoplasms Forecasting K-ras gene Least squares support vector machines
  • 相关文献

参考文献9

二级参考文献26

  • 1杨国庆,沈铁峰,王莉.1998~2003年葫芦岛市流行性出血热流行病学分析[J].医学动物防制,2005,21(2):109-110. 被引量:2
  • 2苏高利,秦钟,于强.基于最小二乘支持向量机的农田水汽通量建模[J].生物数学学报,2007,22(1):171-177. 被引量:4
  • 3Ngo L, Tager IB, Hadley D. Application of exponential smoothing for nosocomial infection surveillance[J ]. Am J Epidemiol, 1996,143 (6) : 637-647.
  • 4Vapnik V. The nature of statistical learning [M]. New York: Springer, 1995 : 138-170.
  • 5Burges CJC. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2): 121-167.
  • 6Wang S, Ethier S. A generalized likelihood ratio test to identify differentially expressed genes from microarray data[J]. Bioinformatics, 2004, 20(1): 100-104.
  • 7Golub TR, Slonim D, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999, 286 (5439): 531-537.
  • 8吴伟,郭军巧,王萍,周宝森.广义回归神经网络在肾综合征出血热发病率预测中的应用[J].中国媒介生物学及控制杂志,2007,18(6):483-488. 被引量:14
  • 9Cunningham D,Humblet Y,Siena S,et al.Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer[].New England Journal of Homeopathy.2004
  • 10Saltz LB,Meropol NJ,Loehrer PJ Sr,et al.Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor[].Journal of Clinical Oncology.2004

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部