摘要
研究了一类变系数抛物型方程两相 Stefan 问题,通过对方程作适当的积分变换将其化为积分方程.再利用 Schauder 不动点定理证明了方程解的存在性和唯一性定理.
A two-phase Stefan problem of variable coefficient parabolic equations is discussed, then it is transformed into an integral equation by using suitable integral transformation and the existence and unique theorem of the solution are proved by applying Schauder fixed point theorem.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
1999年第3期38-43,共6页
Journal of Harbin Engineering University
关键词
自由边界
极大值
抛物方程
变系数
free boundary
maximum principle
Schauder fixed point theorem.