期刊文献+

烟雾暴露对大鼠肺泡巨噬细胞曲霉防御功能的影响 被引量:2

Effects of smoke exposure on defense to Aspergillus in rat alveolar macrophage
下载PDF
导出
摘要 目的研究烟雾暴露对大鼠肺泡巨噬细胞(AM)曲霉防御功能的影响。方法建立烟雾暴露大鼠模型,分离肺泡巨噬细胞,并用免疫荧光法进行鉴定。加入烟曲霉孢子共培养,测定AM的吞噬率及吞噬指数;用ELISA方法检测培养上清中TNF-α和IL-1β的浓度;用免疫组化检测树突状细胞相关性C型植物血凝素-1(Dectin-1)蛋白的表达。结果烟雾暴露组AM对烟曲霉孢子的吞噬率下降(P<0.05),吞噬指数无显著变化。孢子刺激后,烟雾暴露组培养上清中TNF-α和IL-1β的浓度显著低于对照组(P<0.05)。烟雾暴露组AM中Dectin-1蛋白的表达低于对照组(P<0.05)。结论烟雾暴露使大鼠AM吞噬能力下降,对曲霉的防御功能受损,这种功能变化可能与Dectin-1蛋白表达降低有关。 To investigate the effects of smoke exposure on defense function of alveolar macrophage(AM) against Aspergillus in rat,we set up a rat model of smoke exposure with normal rat as controls.Alveolar macrophages of model rat were isolated and identified by immunofluorescence,then co-cultured with Aspergillus fumigatus conidia to measure the phagocytic rate and phagocytic index.The concentration of TNF-α and IL-1β in the culture supernatant was evaluated by ELISA.The expression of dendritic cell-associated C-type lectin-1(Dectin-1) protein was detected by immunohistochemistry.We found that macrophage phagocytic rate of Aspergillus fumigatus conidia decreased significantly(P 0.05) in smoke exposure group,but no significant difference was observed on phagocytic index between two groups.After stimulation with conidia,ELISA showed that the concentration of TNF-α and IL-1β in culture supernatant of smoke exposure group was significantly lower than that in control group(P 0.05).While immunohistochemistry indicated the expression of Dectin-1 protein in smoke exposure group was less than that in control group(P 0.05).In conclusion,smoke exposure can impair the defense function of AM to Aspergillus,and this change may be associated with decreased expression of Dectin-1 protein in AM.
出处 《免疫学杂志》 CAS CSCD 北大核心 2011年第3期207-210,共4页 Immunological Journal
关键词 巨噬细胞 曲霉菌 烟雾暴露 树突状细胞相关性C型植物血凝素-1 Macrophage Aspergillus Smoke exposure Dendritic cell-associated C-type lectin-1
  • 相关文献

参考文献18

  • 1Nuorti J P, Butler JC, Farley MM, et al. Cigarette smoking and invasive pneumococcal disease. Active Bacterial Core Surveillance Team [J]. N Engl J Med, 2000, 342 (10): 681-689.
  • 2Wasylnka JA, Moore MM. Uptake of Aspergillus fumigatus Conidia by phagocytic and nonphagocytic cells in vitro: quantitation using strains expressing green fluorescent protein[J]. Infect Immun, 2002, 70(6):3156-3163.
  • 3Bulpa PA, Dive AM, Garrino MG, et al. Chronic obstructive pulmonary disease patients with invasive pulmonary aspergillosis: benefits of intensive care[J]. Intensive Care Med, 2001, 27(1): 59-67.
  • 4Samarakoon P, Soubani AO. Invasive pulmonary aspergillosis in patients with COPD: a report of five cases and systematic review of the literature[J]. Chron Respir Dis, 2008, 5 (1): 19-27.
  • 5Meersseman W, Lagrou K, Maertens J, et al. Invasive aspergillosis in the intensive care unit[J]. Clin Infect Dis, 2007, 45(2): 205-216.
  • 6Luther K, Torosanlucci A, Brakhage AA, et al. Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2[J]. Cell Microbiol, 2007, 9(2): 368-381.
  • 7Large JP. The pathobiology of Aspergillus fumigatus [J]. Trends Microbiol, 2001, 9(8): 382-389.
  • 8Romani L. Immunity to fungal infections [J]. Nat Rev hn- munol, 2004, 4(1): 1-23.
  • 9Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll-likc/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo[J]. J lmmunol, 2004, 172(5): 3059-3069.
  • 10Macnee W. Pathogenesis of chronic obstructive pulmonary disease[J]. Clin Chest Med, 2007, 28(3): 479-513,v.

二级参考文献13

  • 1徐璐璐,郭述良.小鼠DC-SIGN研究进展[J].免疫学杂志,2009,25(4):477-479. 被引量:2
  • 2王靖雪,张小萍,贾正才,耿淼,吴玉章.DC-SIGN荧光融合蛋白的构建、表达和生物学功能初探[J].免疫学杂志,2006,22(4):370-373. 被引量:5
  • 3Feinberg H, Mitchell DA, Drickamer K, et al. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR[J]. Science, 2001, 294 (5594): 2163-2166.
  • 4Gringhuis SI, den Dunnen J, Litjens M, et al. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori [J]. Nat Immuuol, 2009, 10 (10): 1081-1088.
  • 5Steeghs L, van Vliet SJ, Uronen-Hansson H, et al. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function[J]. Celt Microbiol, 2006, 8 (2): 316-325.
  • 6Hovius JW, de Jong MA, den Dunnen J, et al. Salpl5 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization [J]. PLoS Pathog, 2008, 4 (2): e31.
  • 7Wang J, Zhang Y, Wei J, et al. Lewis X oligosaccharides targeting to DC-SIGN enhanced antigen-specific immune response[J]. Immunology, 2007, 121 (2): 174-182.
  • 8Ham DA, McDonald J, Atochina O, et al. Modulation of host immune responses by helminth glycans [J]. Immunol Rev, 2009, 230 (1): 2472-57.
  • 9Bogoevska V, Nollau P, Lucka L, et al. DC-SIGN binds I- CAM-3 isolated from peripheral human leukocytes through Lewis x residues[J]. Glycobiology, 2007, 17 (3): 324-333.
  • 10Geijtenbeek TB, Torensma R, van Vliet SJ, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses [J]. Cell, 2000, 100 (5): 575-585.

共引文献1

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部