期刊文献+

大型管理信息系统(MIS)中数据库瓶颈的分析与优化 被引量:1

Analysis and Optimization of the Database Bottleneck in a Large-scale Management Information System(MLS)
下载PDF
导出
摘要 数据库是信息管理系统瓶颈常发环节。性能调优及代码优化(软优化)虽能解决绝大部分瓶颈问题,但对海量数据的访问性能提升依然存在先天不足,而物理层面对I/O的优化(硬优化)往往能够起到突出效果。实验结果表明,针对基本表设计、表分割以及表对象放置的优化策略对海量数据访问性能的提升起到良好作用,可作为软优化的重要补充。 Database is the part where there are frequently bottlenecks in an information management system.Soft optimization methods such as capability and code optimization are able to solve most of bottlenecks,but still unable to help improve the performance of mass data visits.However,the physical level usually exerts extraordinary effects on I/O optimization (hard optimization).Experiment results show that the optimization strategies used in basic chart design,chart division and placement of chart subjects are favorable to improve the mass data visit performance and can be used as significant supplement to soft optimization.
作者 姚磊岳 江婕
出处 《江西蓝天学院学报》 2010年第3期44-46,39,共4页 Journal of Jiangxi Blue Sky University
关键词 管理信息系统 性能优化 Management Information System optimizing capability
  • 相关文献

参考文献2

二级参考文献16

  • 1Babcock AK,Babu S,Datar M.Model and issues in data stream systems.In:Popa L,ed.Proc.of the 21st ACM SIGACT-SIGMOD-SIGART Symp.on Principles of Database Systems.Madison:ACM,2002.1-16.
  • 2Fang M,Shivakumar N,Garcia-Molina H,Motwani R,Ullman J.Computing iceberg queries eefficiently.In:Gupta A,Shmueli O,Widom J,eds.Proc.of the 24th Int'l Conf.on Very Large Data Bases.New York:Morgan Kaufmann Publishers,1998.299-310.
  • 3Agrawal R,Srikant R.Fast algorithms for mining association rules.In:Bocca JB,Jarke M,Zaniolo C,eds.Proc.of the 20th Int'l Conf.on Very Large Data Bases.Santiago:Morgan Kaufmann Publishers,1994.487-499.
  • 4Estan C,Verghese G.New directions in traffic measurement and accounting:Focusing on the elephants,ignoring the mice.ACM Trans.on Computer Systems,2003,21(3):270-313.
  • 5Charikar M,Chen K,Farach-Colton M.Finding frequent items in data streams.In:Widmayer P,Ruiz FT,Bueno RM,Hennessy M,Eidenbenz S,Conejo R,eds.Proc.of the Int'l Colloquium on Automata,Languages and Programming.Malaga:Springer-Verlag,2002.693-703.
  • 6Cormode G,Muthukrishnan S.What's hot and what's not:Tracking most frequent items dynamically.In:Halevy AY,Ives ZG,Doan AH,eds.Proc.of the 22nd ACM SIGACT-SIGMOD-SIGART Symp.on Principles of Database Systems.San Diego:ACM Press,2003.296-306.
  • 7Jin C,Qian W,Sha C,Yu JX,Zhou A.Dynamically maintaining frequent items over a data stream.In:Carbonell J,ed.Proc.of the 2003 ACM CIKM Int'l Conf.on Information and Knowledge Management.New Orleans:ACM Press,2003.287-294.
  • 8Manku GS,Motwani R.Approximate frequency counts over data streams.In:Bernstein P,Ioannidis Y,Ramakrishnan R,eds.Proc.of the 28th Int'l Conf.on Very Large Data Bases.Hong Kong:Morgan Kaufmann Publishers,2002.346-357.
  • 9Karp R,Papadimitriou C,Shenker S.A simple algorithm for finding frequent elements in sets and bags.Trans.on Database Systems,2003,28(1):51-55.
  • 10Demaine E,López-Ortiz A,Munro JI.Frequency estimation of Internet packet streams with limited space.In:M(o)hring RH,Raman R,eds.Algorithms.ESA 2002,Proc.of the 10th Annual European Symp.Rome:Springer-Verlag,2002.348-360.

共引文献32

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部