期刊文献+

盐酸胍处理对皮胶原热降解行为的影响 被引量:1

Influence of Guanidine Hydrochloride on Thermal Degradation Behavior of Collagen Fibers
下载PDF
导出
摘要 采用热重法(TG)和微分热重分析法(DTG)研究了经过不同浓度盐酸胍溶液处理的皮胶原纤维的热降解行为,用Horowitz-Metzger和Coats-Redfern2种方法计算,并得到了未处理皮胶原纤维和不同浓度盐酸胍溶液处理后的皮胶原纤维的热降解活化能。研究结果表明:2种方法得到的皮胶原纤维的热降解活化能相差不大,都随所使用的盐酸胍浓度的增大而逐渐减小。其可能机理为,盐酸胍分子中含有2个氨基,通过破坏皮胶原中的氢键,从而改变皮胶原的构象和聚集态结构。经过盐酸胍处理后,皮胶原纤维的结构变得不稳定,可以为随后其它材料渗透到皮胶原纤维内部,与皮胶原之间发生相互作用创造必要的条件。 Collagen fibers were processed in guanidine hydrochloride solutions of different concentrations,and the thermal deg-radation behaviors of the collagen fibers were studied and analyzed with thermogravimetry ( TG) and differential thermogravimetry analysis ( DTG) . Both methods of Horowitz-Metzger and Coats-Redfern were used to calculate the thermal degradation activation energies of collagen fibers processed in different concentrations of guanidine hydrochloride. It indicates that the differences between the thermal degradation activation energy by the two methods are little and could be neglected. The thermal degradation activation energy decreases with increasing the guanidine hydrochloride concentration. Guanidine hydrochloride process may destroy the original hydrogen bonds in collagen fibers and change their aggregation structure. After guanidine hydrochloride process,the collagen structure is unstable,which may do well in the penetration of leather chemicals to combine with collagen in leather making.
出处 《中国皮革》 CAS 北大核心 2011年第7期30-33,共4页 China Leather
基金 国家自然科学基金(No.50973097) 河南省高校科技创新人才支持计划(2009HASTIT015)资助
关键词 盐酸胍 皮胶原纤维 氢键 热降解活化能 guanidine hydrochloride collagen fibers hydrogen bond thermal degradation activation energy
  • 相关文献

参考文献9

  • 1Tang Keyong, Wang Fang, Liu Jie, et al. Preliminary studies on the thermal degradation kinetics of cattlehide collagen fibers[J], J. Amer. Leath. Chem. Asso., 2004, 99(10):401-408.
  • 2汤克勇,冯文坡,王芳,潘洪波.尿素对皮胶原热降解行为的影响及其可逆性[J].中国皮革,2010,39(13):9-12. 被引量:3
  • 3Tang Keyong, Dominick J. Casadonte, Jr., Zheng Xuejing, et al. Thermal shrinkage effects on the mechanical behavior of lethers [ J ]. J. Amer. Leath. Chem. Asso. , 2010, 105(3) : 94 -99.
  • 4Van Krevelen D W, Van Heerden C, Huntjens. Physicochemical aspects of the pyrolysis of coal and related organic compounds [J]. Fuel, 1951, 30:253.
  • 5Molero B I, Makhatadze G I, Matthews C R. Mapping the energy surface for the folding reaction of the coiled coil peptide GCN 4 - PI [ J]. Biochemistry, 2001, 40:719-731.
  • 6Wetlaufer D B, Malik S K, Stoller L, et al. Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts [ J]. J. Am. Chem. Soc. , 1964, 86:508-514.
  • 7Vanzi F, MadamB, Sharp K. The surface tension of water calculated from a random network model [J]. J. Am. Chem. Soc. , 1998, 120:10 748 -10 753.
  • 8Qin z, Rottinghaus H, Susan M, et al. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect [J]. Proteins, 1998, 31 (2): 107 -115.
  • 9沈同,王镜岩.生物化学.第3版.北京:高等教育出版社,2002.

二级参考文献8

  • 1Tang Keyong, Wang Fang, Liu Jie, et al. Preliminary studies on the thermal degradation kinetics of cattlehide collagen fibers[J], J. Amer. Leath. Chem. Asso. , 2004, 99 (10) :401 - 408.
  • 2Tang Keyong, Casadonte Dominick J, Jr., Zheng Xuejing, et al. Thermal shrinkage effects on the mechanical behavior of leathers [ J ], J. Amer. Leath. Chem. Asso. , 2010, 105(3): 94-99.
  • 3Van Krevelen D W, Van Heerden C, Huntjens. Physicochemical aspects of the pyrolysis of coal and related organic compounds [J]. Fuel, 1951, 30:253.
  • 4沈同,王镜岩.生物化学[M].(第3版).北京:高等教育出版社,2002.
  • 5Makhatadze G I, Privalov P L. Protein interaction with urea and guanidinium chloride : a calorimetric study [J]. J. Z. Biol., 1992, 226:491 -505.
  • 6Roseman M, Jecks W P. Interaction of urea and other polar compounds in water[ J ]. J Am, Chem Soc, 1975, 97:631 -640.
  • 7郑学晶,王堃,王艳艳,秦树法,刘捷,汤克勇.碱处理胶原纤维的热降解研究[J].中国皮革,2008,37(17):15-19. 被引量:2
  • 8汤克勇,刘捷,王芳,刘京龙,张金.牛皮胶原纤维热降解活化能的研究[J].中国皮革,2004,33(7):25-27. 被引量:7

共引文献4

同被引文献24

  • 1Doublet B. , Van Der Rest M. , J. Biol. Chem. , 1991, 266, 6853-6858.
  • 2Friess W. , Eur. J. Pharrn. Biopharm. , 1998, 45, 113-136.
  • 3Blair H. C. , Zaidi M. , Sehlesinger P. H. , Biochem. J. , 2002, 354,329-341.
  • 4Brekken R. A. , Sage E. H. , Matrix Biology, 2000, 19, 569-580.
  • 5Kadler K. , Pretein Profile. , 1995, 2,491-519.
  • 6Meaney M. M. , Rice K. , Wright R. J. , Speetor M. , J. Orthop. , Res. , 2003, 21,238-244.
  • 7Usha R. , Ramasami T. , Themochimica Acta, 2004, 409, 201-206.
  • 8Sionkowska A. , Kaminska A. , Inter. J. Biol. Macromolecules, 1999, 24, 337-340.
  • 9MeClain P. E. , Wiley E. R. , J. Biol. Chem. , 1972, 247(3), 692--697.
  • 10Wang F. , Tang K. Y. , Pan H. B. , China Leather, 2011,40(7), 30-33.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部