期刊文献+

Microstructure Evolution of Ti-47Al-2Cr-2Nb Alloy in the Liquid-Metal-Cooling (LMC) Directional-Solidification Process 被引量:1

Microstructure Evolution of Ti-47Al-2Cr-2Nb Alloy in the Liquid-Metal-Cooling (LMC) Directional-Solidification Process
下载PDF
导出
摘要 The microstructure evolution of Ti-47Al-2Cr-2Nb alloy was investigated on liquid metal cooling type directional solidified apparatus at high temperature gradient.The analysis shows that it is solidified with primary β cells/dendrites,and then α phase is formed through peritectic reaction.Once the columnar grains grow into the steady state,the lamellar orientation inclined with the angle of 45° to the withdrawal direction is more favored than that with parallel to the withdrawal direction.In addition,α phase grain nucleates from β-interdendrite regions,and grows up to the dendritic trunk.If no other α grain hinders its growth,it would occupy the whole dendrite,or it would stop at the dendritic trunk for the weakened motivating drive in the β dendritic core. The microstructure evolution of Ti-47Al-2Cr-2Nb alloy was investigated on liquid metal cooling type directional solidified apparatus at high temperature gradient.The analysis shows that it is solidified with primary β cells/dendrites,and then α phase is formed through peritectic reaction.Once the columnar grains grow into the steady state,the lamellar orientation inclined with the angle of 45° to the withdrawal direction is more favored than that with parallel to the withdrawal direction.In addition,α phase grain nucleates from β-interdendrite regions,and grows up to the dendritic trunk.If no other α grain hinders its growth,it would occupy the whole dendrite,or it would stop at the dendritic trunk for the weakened motivating drive in the β dendritic core.
作者 肖志霞 张虎
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期198-202,共5页 武汉理工大学学报(材料科学英文版)
关键词 TiAl-based alloy directional solidification lamellar orientation peritectic reaction TiAl-based alloy directional solidification lamellar orientation peritectic reaction
  • 相关文献

参考文献20

  • 1Luo W, Shen J, Min Z, et al. Lamellar Orientation Control of TiAl Alloys under High Temperature Gradient with a Ti-43Al-3 Si Seed [J]. J. Cryst. Growth, 2008, 310(24): 5441-5446.
  • 2Yamaguchi M, lnui H, Ito K. High-temperature Structural Intermetallics[J]. Acta Mater., 2000, 48( 1 ): 307-322.
  • 3Dimiduk D M. Gamma Titanium Aiuminide Alloys--An assessment within the Competition of Aerospace Structural Materials[J]. Mater. Sci. Eng. A, 1999, 263(2): 281-288.
  • 4Kim Y W. Gamma Titanium Aluminide: Their Status and Future[J]. JOM., 1995, 47(7): 39-41.
  • 5Kishida K, Johnson D R, Masuda Y, et al. Deformation and Fracture of PST Crystals and Directionally Solidified Ingots of TiAl-based Alloys[J]. Intermetallies, 1998, 6(7-8): 679-683.
  • 6Yarnaguchi M, Johnson D R, Lee H N, et al. Directional Solidifca- tion of TiAl-base Alloys [J]. Intermetallics, 2000, 8(5-6):511-517.
  • 7Johnson D R, Inui H, Muto S, et al. Microstructural Devel- opment during Directional Solidification of a-seeded TiAI Alloys[J]. Acta Mater., 2006, 54(4): 1077-1085.
  • 8Takeyama M, Yamamoto Y, Morishima H, et al. Lamellar Orientation Control of Ti-48Al PST Crystal by Unidirectional Sofidification[J]. Mater. Sci. Eng. A, 2002, 329-331 : 7-12.
  • 9Lee H N, Johnson D R, lnui H, et al. Microstructural Control through Seeding and Directional Solidification of TiAl Alloys Containing Mo and C[J]. Acta Mater., 2000, 48(12): 3221-3233.
  • 10Johnson D R, Chih-ara K, Inui H, et al. Microstructural Control of TiAl-Mo-B Alloys by Directional Solidifica- tion[J]. Acta Mater., 1998, 46(18): 6529-6540.

同被引文献19

  • 1PEREPEZKO J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068-1069.
  • 2BEWLAY B P, JACKSON M R, LIPSITT H A. The balance of mechanical and environmental properties of a multi-element niobium-niobium-silicide-based in-situ composite [J]. Metall Mater Trans A, 2003, 34: 85-94.
  • 3BEWLAY B P, JACKSON M R, ZHAO J C, SUBRAMANIAN P R. A review of very high-temperature Nb-Si based composites [J]. Metall and Mater Trans A, 2003, 34: 2043-2052.
  • 4BEWLAY B P, JACKSON M R. The balance of mechanical andenvironmental properties of a multielement niobium-niobium silicide-based in situ composite [J]. Metall Mater Mater Trans A 1996. 27: 3801-3808.
  • 5LI Xiao-jian, CHEN Hai-feng, SHA Jiang-bo, ZHANG Hu. The effects of melting technologies on the microstmctures and properties of Nb-16Si-22Ti-2AI-2Hf-17Cr alloy [J]. Materials Science and Engineering A, 2010, 527(23): 6140-6152.
  • 6SHA Jiang-bo, LIU Jun, ZHOU Chun-gen. Effect of Cr additions on toughness, strength, and oxidation resistance of an Nb-4Si-20Ti-6Hf alloy at room and/or high temperatures [J]. Metall Mater Trans A, 2011, 42(6): 1534-1543.
  • 7JIA Li-na, LI Xiao-jian, SHA Jiang-bo, ZHANG Hu. Effects of directional solidification on microstructure and mechanical properties of Nb-14Si-22Ti-2Hf-2A1-4Cr alloy [J]. Rare Metal Materials and Engineering, 2010, 39(8): 1475-1479. (in Chinese).
  • 8KIM W Y, TANAKA H, KASAMA A, HANANDA S. Microstructure and room temperature fracture toughness of Nbss/NbsSi3 in situ composites [J]. Intermetallics, 2001, 9: 827-834.
  • 9BEWLAY B P, JACKSON M R, GIGLIOTTI M. Niobium silicide high temperature in-situ composites [J]. Intermetallic Compd Princ Pract, 2002, 3: 541-560.
  • 10GUO Hai-sheng, GUO Xi-ping. Microstructure and microhardness of directionally solidified and heat-treated Nb-Ti-Si based ultrahigh temperature alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 1283-1290.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部