期刊文献+

纳米二氧化钛对雄性小鼠生殖的影响 被引量:3

原文传递
导出
摘要 为探讨纳米二氧化钛对雄性小鼠生殖的影响,选择健康清洁级雄性昆明小鼠40只,随机分为正常对照组(生理盐水组)和纳米二氧化钛组(低、中、高剂量分别为10、50、250 mg/kg)染毒2周。观察小鼠染毒前后体重变化,进行精子计数、小鼠睾丸病理组织观察、睾丸和附睾乳酸脱氢酶的活力检测。结果显示,纳米二氧化钛染毒组小鼠的体重增长率、精子数量、精子活动度显著低于对照组(P<0.01或P<0.05),有随着染毒剂量增加而下降的趋势;各染毒组小鼠的精子畸形率均高于对照组(P<0.01或P<0.05),有随着染毒剂量增加而上升的趋势;睾丸切片显示低剂量组间质细胞少量空泡化,中剂量组支持细胞肿大,高剂量组支持细胞肿大且散乱分布,各级生精细胞的分布明显不规则;各染毒组的睾丸和附睾LDH同工酶种类与对照组相比没有差别,但是各染毒组LDH的活力随染毒剂量的增加有下降的趋势。提示纳米二氧化钛对雄性小鼠的生殖系统造成一定程度的损伤。
出处 《环境与健康杂志》 CAS CSCD 北大核心 2011年第3期262-264,I0002,共4页 Journal of Environment and Health
基金 河北省科学技术研究与发展计划项目(07276925) 河北省卫生厅医学科学研究计划项目(2009175) 河北省计生委科研计划项目(2009-B16) 河北省教育厅自然科学研究计划项目(2009105)
  • 相关文献

参考文献10

  • 1Wang J, Zhou G, Chen C, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration [ J ]. Toxicology Letters,2007,168:176-185.
  • 2王翔,闫蕾,贾光,王生.纳米材料潜在健康影响的研究进展[J].毒理学杂志,2005,19(1):15-17. 被引量:17
  • 3张桥.毒理学实验方法与技术[M].北京:人民卫生出版社,2003:70-71.
  • 4GB15193.7-1994小鼠精子畸形试验[S].
  • 5李少群,蔡琬冰,聂木海,梁晓芸.乳酸脱氢酶同功酶活性测定应用研究[J].职业医学,1996,23(6):10-11. 被引量:9
  • 6Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of simulated lunar and Martian dusts in mice: I. Histopathology 7 and 90 days after intratracheal instillation [J].Inhal Toxicol,2002,14:901-916.
  • 7Hirakawa K, Moil M, Yoshida M, et al. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide [J].Free Radic Res,2004,38:439-447.
  • 8Gurr JR, Wang AS, Chen CH, et al. Ultrafine titanium dioxide particles in the absence ofphotoactivation can induce oxidative damage to human bronchial epithelial cells [J].Toxicology, 2005,213:66-73.
  • 9Rahman Q, Lohani M, Dopp E, et al. Evidence that ultra-fine titanium dioxide induces micronuclei and aotosis in syrian hamster embryo fibroblasts [J].Environ Health Persped,2002, 110:797-800.
  • 10Kolosnjaj J, Szwarc H, Moussa F. Toxicity studies of fullerenes and derivatives [J].Adv Exp Med Biol, 2007,620:168-180.

二级参考文献27

  • 1李新建,刘春芳,徐国平,丁训诚.镉对大鼠睾丸生化毒作用的研究[J].卫生毒理学杂志,1989,3(3):133-136. 被引量:12
  • 2Ball P.Roll up for the revolution. Nature,2001,414:142-144.
  • 3Masciangioli T, Zhang WX. Environmental technologies at the nanoscale. Environ Sci Technol, 2003,37:102A- 108A.
  • 4Maynard AD, Baron PA, Foley M, et al. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A, 2004,67: 87-107.
  • 5Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence and lung injury. Environ Health Perspect, 1994,102:173-179.
  • 6Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 2004,16:437-445.
  • 7Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. Toxicol Environ Health, 2003,66:1909-1926.
  • 8Dreher KL. Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicol Sci, 2004,77: 3-5.
  • 9Wang HF, Wang J, Deng XY, et al. Preparation and biological behaviors of125 L-Labeled water-soluble single-wall carbon nanotubes. Nanosic Nanotech, 2004,4:1-6.
  • 10Kreuter J. Nanoparticulate systems for brain delivery of drugs.Adv Drug Deliv Rev, 2001,47:65-81.

共引文献26

同被引文献42

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部