期刊文献+

富锂锂锰氧化物的制备及其在溶液中的抽Li^+/吸Li^+性能 被引量:6

Preparation and Li^+ Extraction/Adsorption Properties of Lithium-Rich Manganese Oxide in Aqueous Solution
下载PDF
导出
摘要 采用柠檬酸配合法合成了系列尖晶石富锂锂锰氧化物Li2O.nMnO2(n=1.75,2.0,2.25,2.5,3.0)。通过X射线衍射(XRD)和酸浸实验发现,350℃合成的Li2O.2.25MnO2具有纯相尖晶石锂锰氧化物结构,且在弱酸性介质中具有较高的锂溶出率和较低的锰溶损率。Li2O.2.25MnO2在酸浸之后转型为锂离子筛。XRD和扫描电子显微镜(SEM)分析发现锂离子筛能够保持尖晶石锂锰氧化物的结构和形貌。吸附实验表明,该锂离子筛在碱性含锂溶液中对Li+具有吸附性能,且吸附容量随着溶液温度和pH值的升高而增大,最高能达到40.14 mg.g-1。通过傅立叶红外光谱(FTIR)研究了锂离子筛的吸附机理,并用Langmuir模型描述了其在LiCl+LiOH溶液中的吸附行为。 Spinel lithium-rich manganese oxides of Li2O·nMnO2(n=1.75,2.0,2.25,2.5,3.0) were synthesized via citric acid complex method.The results of XRD analysis and acid treatment reveal that Li2O·2.25MnO2 prepared at 350 ℃ consists of pure spinel phase of lithium manganese oxide and exhibits high Li extraction ratio and low Mn dissolution ratio.After acid treatment Li2O·2.25MnO2 is transformed to lithium ion-sieve.XRD and SEM analyses show that lithium ion-sieve can maintain the spinel structure and morphology of lithium manganese oxide.The Li+ adsorption experiments show that lithium ion-sieve can adsorb Li+ in alkaline solution and the Li+ adsorption capacities increase with the increase of temperature and pH value of the solution.The maximum Li+ adsorption capacity can reach 40.14 mg·g-1.The Li+ adsorption mechanism was suggested based on FTIR spectroscopy results and the Li+ adsorption behavior was modeled by Langmuir isotherm.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2011年第4期697-703,共7页 Chinese Journal of Inorganic Chemistry
基金 国家科技支撑计划"十一五"重大项目(No.2008BAB35B04) 2010年湖南省博士科研创新项目(No.CX2010B111) 中央专项中南大学前沿研究计划重点项目(No.2010QZZD003)资助
关键词 锂锰氧化物 锂离子筛 结构 稳定性 吸附 lithium manganese oxide lithium ion-sieve structure stability adsorption
  • 相关文献

参考文献20

  • 1Pauwels H, Brach M, Fouillac C. Colloids Surf A, 1995, 100:73-82.
  • 2Umeno A, Miyai Y, Takagi N, et al. Ind. Eng. Chem. Res., 2002,41:4281-4287.
  • 3Hunter J C. J. Solid State Chem., 1981,39:142-147.
  • 4Ooi K, Miyai Y, Sakakihara J. Langmuir, 1991,7:1167-1171.
  • 5Feng Q, Miyai Y, Kanoh H. Langmuir, 1992,8:1861-1867.
  • 6MALi-wen(马立文) CHENBai-Zhen(陈白珍) SHIXi-Chang(石西昌) etal.Wuji Huaxue Xuebao,2010,26(3):413-418.
  • 7DONGDian-Quan(董殿权) LIUWei-Na(刘维娜) LIUYi-Fan(刘亦凡).Wuji Huaxue Xuebao,2009,25(7):1238-1242.
  • 8Yang X J, Kanoh H, Tang W P, et al. J. Mater. Chem., 2000, 10:1903-1909.
  • 9Chitrakar R, Kanoh H, Miyai Y, et al. Chem. Mater., 2000, 12:3151-3157.
  • 10Thackeray M M. Prog. Solids Chem., 1997,25:1-71.

共引文献2

同被引文献27

  • 1冀康平.锂资源的开发与利用[J].无机盐工业,2005,37(5):7-9. 被引量:17
  • 2董殿权,张凤宝,张国亮,刘亦凡.Li_4Ti_5O_(12)的合成及对Li^+的离子交换动力学[J].物理化学学报,2007,23(6):950-954. 被引量:32
  • 3王禄,马伟,韩梅,孟长功.高效锂离子筛吸附剂MnO_2·0.5H_2O的软化学合成及吸附性能研究[J].化学学报,2007,65(12):1135-1139. 被引量:32
  • 4Feng Qi, Miyai Yoshitaka, Kanoh Hirofumi, et al.Li+ extraction/ insertion with spinel-type lithium manganese oxides.Characteriza- tion of redox-type and ion-exchange-type sites [J ].Langmuir, 1992, 8(7) : 1861-1867.
  • 5Kanzaki Y ,Taniguchi A ,Abe M. Mechanism of lithium ion inser- tion into A-MnO2[J].Journal of Electrochemical Society, 1991 , 138(1): 333-334.
  • 6Koyanaka Hideki, Matsubaya Osamu, Koyanaka Yoshio, et al. Quantitative correlation between Li absorption and H content in manganese oxide spinel A-Mn02 [J ]. Journal of Electroanalytical Chemistry, 2003,559 : 77-81.
  • 7Kielland J. Process for the recovery of potassium salts from solu- tions : DE, 691366 [ P ]. 1940-05-24.
  • 8Takeda Y ,Yasui A, Morita M, et al.Extraction of sodium and potas- sium perchlorates with benzo-18-crown-6 into various organic solvents.Quantltative elucidatlon of anion effects on the extraction- ability and selectivity for Na and K+[J].Talanta,2002,56 (3): 505-513.
  • 9Kamatsu M.Potassium-selective adsorbent and its production :JP, 03-205315 [ P ]. 1991-09-06.
  • 10Clearfield A, Bortun A I, Bortun L N, et al.Ou the selectivity regu- lation of K2ZrSi309 "H20-type ion exchangers [J].J.Mol.Struct., 1998,470 ( 1 ) : 207-213.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部