期刊文献+

利用图像不连续特性的溶解型镜头检测算法 被引量:3

Discontinuity-Driven Shot Detection Algorithm for Dissolving Shots
下载PDF
导出
摘要 镜头边界检测是视频分析中的关键技术.传统的镜头边界检测算法只在切变或淡入/淡出等较为简单的镜头转变类型上有较好的检测性能,而针对溶解型镜头帧尚未有成熟的算法.为此,提出一种基于图像不连续性特性的溶解型镜头帧检测算法.首先提出一种基于图像不连续的特征,来衡量每帧图像相邻图像块之间的相似程度;然后利用支持向量机对特征数据进行预分类,并通过纠正错误分类帧和延伸溶解型镜头帧长度来修正分类结果;最终完成对溶解型镜头帧的检测.在TRECVid数据库上的实验结果表明,与传统的溶解型镜头帧检测算法相比,文中算法更能准确、有效地检测出溶解型镜头帧. Detecting shot boundary plays an essential role in video analysis.Conventional methods work well when the shot is cut or faded in/out,while are inefficient for dissolving shots.This paper proposes a novel detection algorithm that leverages the image discontinuity features to characterize the dissolving behaviors of shots.The algorithm consists of three stages.First,the image discontinuity features are employed to measure the proximities between of neighboring image blocks in each image frame.Then,the features are classified by means of the SVM classifier.Finally,misclassified results are corrected,and dissolving shots are extended.The experiments on TRECVid dataset verified that the proposed algorithm can achieve much higher accuracy and robustness compared with traditional methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第5期878-883,890,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(90920008)
关键词 溶解型镜头帧检测 不连续性特征 视频检索 支持向量机 dissolving shot detection discontinuity video analysis SVM
  • 相关文献

参考文献19

  • 1Zhang H J,Wang J Y A,Altunbasak Y.Content-based retrieval and compressions a unified solution[C] //Proceedings of International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,1997,1:13-16.
  • 2Geetha P,Narayanan V.A survey of content-based video retrieval[J].Journal of Computer Science,2008,4(6):474-486.
  • 3Smeaton A F,Wilkins P,Worring M.Content-based video retrieval:three example systems from TRECVid[J].International Journal of Imaging Systems and Technology,2008,18(2/3):195-201.
  • 4万崇玮,李炜明,李和平,胡占义.基于尺度不变特征的视频镜头检测[J].计算机辅助设计与图形学学报,2007,19(9):1094-1099. 被引量:5
  • 5Yusoff Y,Christmas W,Kittler J.Video shot cut detection using adaptive thresholding[C] //Proceedings of the 11th British Machine Vision Conference.Bristo1:ILES Central Press,2000:362-371.
  • 6Lienhart R W.Reliable dissolve detection[C] //Proceedings of SPIE.Bellingham:Society of Photo-Optical Instrumentation Engineers Press,2001,4315:219-230.
  • 7Cotsaces C,Nikolaidis N,Pitas I.Video shot detection and condensed representation.a review[J].Journal of IEEE Signal Processing Magazine,2006,23(2):28-37.
  • 8Smeaton A F,Over P,Doherty A R.Video shot boundary detection:seven years of TRECVid activity[J].Journal of Computer Vision and Image Understanding,2010,114 (4):411-418.
  • 9Koumaras H,Gardikis G,Xilouris G,et al.Shot boundary detection without threshold parameters[J].Journal of Electronic Imaging,2006,15(2):020503.1-3.
  • 10Truong B T,Doral C,Venkatesh S.New enhancements to cut,fade,and dissolve detection processes in video segmentation[C] //Proceedings of the 8th ACM International Conference on Multimedia.New York:ACM Press,2000:219-227.

二级参考文献11

  • 1孙兴华,徐光祐,金国英.基于全局统计的MPEG视频分割[J].计算机辅助设计与图形学学报,2005,17(1):80-84. 被引量:4
  • 2Koprinska I,Carrato S.Temporal video segmentation:a survey[J].Signal Processing:Image Communication,2001,16(5):477-500
  • 3Boreczky J S,Rowe L A.Comparison of video shot boundary detection techniques[C] //Proceedings of SPIE,San Jose,1996,2670:170-179
  • 4Lienhart R.Comparison of automatic shot boundary detection algorithms[C] //Proceedings of SPIE,San Jose,1999,3656:290-301
  • 5Bae T M,Jin S H,Yong M R.Video segmentation using hidden Markov model with multimodal features[C] //Proceedings of Conference on Image and Video Retrieval,Dublin,2004:401-409
  • 6Feng H,Fang W,Liu S,et al.A new general framework for shot boundary detection and key-frame extraction[C] //Proceedings of the 7th ACM SIGMM international workshop on Multimedia information retrieval,Singapore,2005:121-126
  • 7Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60 (2):91-110
  • 8Fraley C,Raftery A E.How many clusters/ Which clustering method/ Answers via model-based cluster analysis[J].The Computer Journal,1998,41(8):578-588
  • 9Bougnoux S.From Projective to Euclidean Space under any practical situation,a criticism of self-calibration[C] //Proceedings of 6th International Conference on Computer Vision,Bombay,1998:790-796
  • 10Hartley R.Self-calibration from multiple views with a rotating camera[C] //Proceedings of 3rd European Conference on Computer Vision,Stockholm,1994:471-478

共引文献4

同被引文献26

  • 1Kenneth R Castleman.Digital Image Processing[M].朱志刚,等译.北京:清华大学出版社,2000.
  • 2Geetha P,Narayanan V.A survey of content-based video retrieval[J].Journal of Computer Science,2008,4(6):474-486.
  • 3Koprinska I,Carrato S.Temporal Video Segmentation,A Survey [J],Signal Processing:Image Communication,2001,16(5):450-477.
  • 4Zabih R,Miller J,Mai K.A feature based algorithm for detecting andclassifying scene breaks [C]//Proceedings of the 3rd ACM Interna-tional Conference on Multimedia,1995:189-200.
  • 5O'Toole C,Smeaton A,Murphy N,et 'al.Evaluation of automatic shotboundary detection on a large video suite [C]//Proceeding of 2nd U.K.Conference on Image Retrieval,Newcastle,U.K.,1999:1-12.
  • 6张子银,白雪生,徐光,等.闪光灯和标题条对新闻视频镜头检测影响的研究[J].淸华大学学报:自然科学版,2003,43(1):71-74.
  • 7彭天强,李弼程.一种有效的抗闪光灯新闻视频镜头检测方法[J].信息工程大学学报,2007,8(4):483-486. 被引量:5
  • 8赵娜,吕凝,刘宏勇.内容的新闻视频的切变镜头检测算法[J].吉林大学学报(信息科学版),2009,27(1):50-55. 被引量:3
  • 9杜奎然,肖国强,江健民.基于多种视频特征的镜头边界检测算法[J].计算机工程,2009,35(11):243-245. 被引量:5
  • 10王洪申,张树生,白晓亮,张开兴.三维CAD曲面模型距离-曲率形状分布检索算法[J].计算机辅助设计与图形学学报,2010,22(5):762-770. 被引量:14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部