期刊文献+

盐生杜氏藻烯醇酶基因启动子的克隆分析及胁迫转录应答 被引量:2

Cloning of Promoter of the Enolase Gene from Duanliella salina and Its Transcriptional Response to Stress
原文传递
导出
摘要 为了解盐生杜氏藻(Dunaliella salina)烯醇酶(Enolase)在渗透耐受中的具体功能,利用基因组步行方法和巢式PCR,从D.salina中克隆了烯醇酶基因DsENO 5’上游约2 000 bp的调控序列,并对其进行序列分析.分析表明,它包含多个与转录调控有关的保守序列(如CAAT-box,TATA-box),富含光﹑干旱及其它胁迫应答元件.利用实时荧光定量PCR的方法,研究了高渗﹑高温以及低温外界胁迫条件下DsENO的转录情况,发现其受高渗强烈抑制,高温显著诱导而低温微弱诱导. With the genome walking method and nested PCR,enolase gene DsENO 5'upstream regulatory sequence(about 2 000 bp) was cloned from Dunaliella salina,and its sequence analysis was made to investigate the specifi c function of D.salina during osmotic stress tolerance.The result shows that it includes several conserved sequences related to transcriptional regulation,such as CAAT-box,TATA-box,and it is rich in light,drought and other stress responsive elements.With the real-time fluorescence quantitative PCR method,the DsENO transcription under hyperosmotic,high-temperature and low-temperature stress were studied to fi nd that it was strongly inhibited by hyperosmotic stress and significantly induced by high-temperature,but slightly induced by low-temperature.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2011年第2期202-206,共5页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(Nos.30500006 30970043)资助~~
关键词 盐生杜氏藻 烯醇酶 基因组步行 启动子 实时荧光定量PCR 胁迫应答 Dunaliella salina enolase genome walking promoter real-time fluorescence quantitative PCR response to stress
  • 相关文献

参考文献19

  • 1Avron M. The osmotic component of halotolerant algae. Trends Biochem Sci, 1986, 11 (1): 5-6.
  • 2Ben-Amotz A, Avron M. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol, 1973, 51 (5): 875-878.
  • 3Goyal A. Osmoregulation in Dunaliella, Part Ⅱ: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Biochem, 2007, 45 (9): 705-710.
  • 4Goyal A, Lilley RMcC, Brown AD. The size and turnover of the glycerol pool in Dunaliella. Plant Cell Environ, 1986, 9 (9): 703-706.
  • 5Brewer JM, Lebioda L. Current perspectives on the mechanism of catalysis by the enzyme enolase. In: Bush CA ed. Advances in Biophysical Chemistry. Greenwich, Conn: JAI Press, 1997, 6: 111-141.
  • 6Iida H, Yahara I. Yeast heat-shock protein of Mr 48, 000 is an isoprotein of enolase. Nature, 1985, 315: 688-690.
  • 7Miller BS, Kennedy TE, Streips UN. Molecular characterization of specific heat shock proteins in Bacillus subtilis. Curr Microbiol, 1991, 22 (4): 231-236.
  • 8O'Sullivan T, van Sinderen D, Fitzgerald G. Structural and functional analysis of pC165st, a 6.5 kb plasmid from Streptococcus thermophilus ND1-6. Microbiology, 1999, 145 (1): 127-134.
  • 9Lal SK, Johnson S, Conway T, Kelley PM. Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli. Plant Mol Biol, 1991, 16 (5): 787-795.
  • 10Lee H, Guo Y, Ohta M, Xiong LM, Stevenson B, Zhu JK. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J, 2002, 21 (11): 2692-2702.

二级参考文献11

  • 1[3]Wolf A H, Slayman C W, Gradmann D. Primary structure of the plasma membrane H(+)-ATPase from the halotolerant alga Dunaliella bioculata, Plant Mol Biol,1995,28(4):657-660
  • 2[4]Ben-amotz A,Avron M.On the factors which determine massive β -carotene accumulation in the halotolerant alga Dunaliella bradawil.Plant Physiology,1983, 72:593-597
  • 3[5]Gimmler H, Moller E M.Salinity-dependent regulation of starch and glycerol metabolism in Dunaliella parva. Plant Cell Environ, 1981, 4:367-375
  • 4[6]Da Silva A C R, Ferro J A, Reinach F C, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature,2002,417 (23):459-463
  • 5[7]Mazzoni C, Ruzzi M, Rinaldi T, et al. Sequence analysis of a 10.5 kb DNA fragment from the yeast chromosome VII reveals the presence of three new open reading frames and of a tRNAThr gene. Yeast,1997,13 (4):369-372
  • 6[8]Blakeley S D, Dekroon C, Cole K P, et al.Isolation of a full-length cDNA encoding cytosolic enolase from Ricinus communis.Plant Physiol, 1994,105 (1):455-456
  • 7[9]Van der Straeten D, Rodrigues-Pousada R A, Goodman H M, et al. Plant enolase:gene structure, expression, and evolution. Plant Cell,1991,3(7):719-735
  • 8[10]Forsthoefel N R, Cushman M A, Cushman J C.Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Messembryanthemum Crystsllinum L. Plant Physiol, 1995,108(3): 1 185-1 195
  • 9[11]La S K, Lee C F, Sachs M M, et al. Differential regulation of enolase during anaerobiosis in maize. Plant Physiol, 1998,118(4): 1 285-1 293
  • 10[12]Norbeck J, Blomberg A.Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl: Evidence of osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem,1997,272(9):5 544-5 554

共引文献3

同被引文献20

  • 1ZHAOJing-Ya,ZUOKai-Jing,QINJie,TANGKe-Xuan.Molecular Cloning and Characterization of Enolase from Oilseed Rape (Brassica napus)[J].Acta Botanica Sinica,2004,46(10):1226-1233. 被引量:2
  • 2上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1985.538-628.
  • 3FORSTHOEFEL N R, CUSHMAN M A, CUSHMAN J C. Posttranscriptional and posttranslational control of enolase expression in the facultative crassulacean acid metabolism plant Messembryanthemum crystslli- nurn L.[J]. Plant Physiology, 1995, 108(3).. 1185- 1195.
  • 4DA-SILVA A C R, FERRO J A, REINACH F C, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities[J]. Nature, 2002, 417(23): 459-463.
  • 5FOX T C, MUJER C V, ANDREWS D L, et al. I- dentification and gene expression of anaerobically in- duced enolase in Echinochloa phyllopogon and Echi- nochloa cruspavonis[J]. Plant Physiology, 1995, 109 (2) : 433-443.
  • 6LAL S K, LEE C, SACHS M M. Differential regula- tion of eno|ase during anaerobiosis in maize[J]. Plant Physiology, 1998, 118(4): 1285-1293.
  • 7HOJOUNG L, YAN G, MASARU O, et al. LOS2, a genectic locus required for cold-responsive gene tran- scription encodes a bi-functional enolase[J]. The EM- BO Journal, 2002, 21(11) 2692-2702.
  • 8WOLF A H, SLAYMAN C W, GRADMANN D. Pri- mary structure of the plasma membrane H+-ATPase from the halotolerant alga Dunaliella bioculata [J]. Plant Molecular Biology, 1995, 28(4) : 657-666.
  • 9O'SULLIVAN T, SINDEREN D V, FITZGERALD G. Structural and functional analysis of pCI65st, a 6.5 kb plasmid from Streptococcus thermophilus MDI-6 [J]. Microbiology, 1999, 145(1): 127-134.
  • 10PANDEY A K, JAIN P, PODILA G K, et al. Cold induced Botrytis cinerea enolase (BcEnol-1) func- tions as a transcriptional regulator and is controlled by cAMP [J]. Molecular Genetics Genomics, 2009, 281(2) : 135-146.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部