摘要
一方面利用 Euler 定理证明了循环 Cn < 1 ,k ,n/2 > 的连通度不超过其最小度5 ;另一方面,在 Cn < 1 ,k ,n/2 > 中任意删去4 个顶点后,证明剩余图仍然连通,从而说明其连通度不小于5 .从以上两方面证明可知, Cn < 1 ,k ,n/2 >
The connectivities of the circulants C n<1,k,n/2> are deterimed to be 5,which their connectivities are, on ane hand, less than or equal to the minimum degree 5 according to the Euler theorem,on the other hand greater than or equal to 5 by removing arbitary four rertex from C n<1,k,n/2> and proving the rese graphs still connecting.
出处
《昆明理工大学学报(理工版)》
1999年第3期83-87,共5页
Journal of Kunming University of Science and Technology(Natural Science Edition)
基金
云南工业大学校自立基金