摘要
记Vr(F2)是有限域F2上的r维向量空间,令S是Vr(F2)的含有n个向量的子集合,如果S中任意t个向量在有限域F2上都线性无关,则称S是n元t无关组。称S为极大n元t无关组,是指在所有的n元t无关组中,S的向量个数达到最大值,把这个极大值记为M(r,t)。n元t无关组在密码、纠错码理论以及区组设计等方面有着重要的应用。利用若干线性纠错码的结果,给出了关于M(r,t)的若干下界。
Let Vr(F2) be the vector space of dimension r over finite field F2,and S be a subset of Vr(F2),consisting of n nonzero vectors,such that the arbitrary t vectors of S are linearly independent over F2,then M is called a(n,t)-linearly independent array of length n over Vr(F2).The(n,t)-linearly independent array that has the maximal number of elements is called the maximal(r,t)-linearly independent array,and the maximal number is denoted by M(r,t).The(n,t)-linearly independent array has many applications in cryptography,coding theory and block design and so on.In this paper,some low bounds on M(r,t) by linear coding theory is given.
出处
《通信技术》
2011年第4期172-174,共3页
Communications Technology
基金
广州市属高校科技计划基金资助项目(编号:08C017)