期刊文献+

基于语言真值格值一阶逻辑的不确定性推理的语法 被引量:4

Syntax of Uncertainty Reasoning Based on Linguistic Truth-valued Lattice Value First-order Logic
原文传递
导出
摘要 讨论基于语言真值格值一阶逻辑的不确定性推理的语法内容,并研究了推理规则的闭性和可靠性,证明了推理规则在α≤∧θ∈Ln×L2(θ→θ′)(θ≠(an,b2))水平下的闭性,得到了推理规则在此水平下可靠性的充分必要条件。 The syntax under uncertainty reasoning based on linguistic truth-valued lattice values first-order logic was discussed in this paper,the closed and sound properties of inference rules were investigated,and it is proved that the inference rules have closed under the level α≤∧θ∈Ln×L2(θ→θ′)(θ≠(an,b2)),a sufficient and essential condition was obtained in the level.
作者 赖家俊 徐扬
出处 《模糊系统与数学》 CSCD 北大核心 2011年第2期1-6,共6页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60875034) 教育部博士点专项基金资助项目(20060613007)
关键词 语言真值格蕴涵代数 语言真值格值一阶逻辑 语法 不确定性推理 Linguistic Truth-valued Lattice Implication Algebra Linguistic Truth-valued Lattice-valued First-order Logic Syntax Uncertainty Reasoning
  • 相关文献

参考文献20

  • 1Zadeh L A.The concept of linguistic variable and application to approximate reasoning,Part Ⅰ.Part Ⅱ.Part Ⅲ[J].Information Science,1975,8:199~249;8:301~357;9:43~80.
  • 2Zadeh L A.Fuzzy logic=Computing with words[J].IEEE Trans.Fuzzy Systems,1996,4(2):103~111.
  • 3Corden O,Herrera F,Zwir I.A hierarchical knowledge-based environment for linguistic modelings models and iterative methodology[J].Fuzzy Sets and Systems,2003,138:307~341.
  • 4Cat Ho N,Wechler W.Hedge algebras; An algebraic approach to structure of sets of linguistic truth values[J].Fuzzy Sets and Systems,1990,35(3):281~293.
  • 5Cat Ho N.A method in linguistic reasoning on a knowledge base representing by sentences ith linguistic belief degree[J].Fund.Inform.,1996,28(3~4):247~259.
  • 6Pei Z.Xu Y.Lattice implication algebra model of a kind of linguistic terms and its inference[C]//Proceedings of the6th International FLINS Conference,2004:93~98.
  • 7Chen S W,Xu Y,Ma J.A linguistic truth-valued uncertainty reasoning model based on lattice-valued logic[C]//Fuzzy system and knowledge discovery,Second International Conference,FSKD2005.LNAI 3613,2005:276~283.
  • 8Xu Y,Chen S W,Ma J.Linguistic truth-valued lattice implication algebra and its properties[C]//Proc.of CESA2006 Conference,2006:1413~1418.
  • 9Meng D,Jia H D,Xu Y.Framework of six linguistic lattice-valued evaluation system[Z].International Conferenceon Intelligent Systems and Knowledge Engineering,2006.
  • 10Xu Y,Liu J,Ruan D,Lee T T.On the consistency of rule bases based on lattice-valued first-order logic LF(X)[J].International Journal of Intelligent Systems,2006,21:399~424.

二级参考文献45

  • 1秦克云 徐扬.格值命题逻辑(Ⅱ).西南交通大学学报,1994,(2):22-27.
  • 2Jordan P,Wigner E,Von Neumann J.On an algebraic generalization of the quantum mechanical formulation[J].Ann.of Math.,1934,35.
  • 3Birkhoff G,Neumann J.The logic of quantum mechanics[J].Ann.of Math.,1936,7(4).
  • 4Svozil K.Quantum logic[M].Singapore:Springer-Verlag,1998.
  • 5Zadeh L A.Outline of new approach to the analysis of complx systems and decision processes[J].IEEE Trans Syst Man Cybern,1973,1:28-44.
  • 6Dubois D,Prade H.Fuzzy sets in approximate reasoning I[J].Fuzzy Sets Syst.,1991,40(1):143-202.
  • 7Pavelka J.On fuzzy logic Ⅰ,Ⅱ,Ⅲ[J].Zeitschr.F.Math.Logic and Grundlagend Math.,1979,25:45-52;119-134;447-464.
  • 8陈永义.模糊控制技术及实用实例[M].北京:北京师范大学出版社,1995.
  • 9Xu Y,Ruan D,Qin K Y,Liu J.Lattice-valued logic-An alternative approach to treat fuzziness and incomparability.Studies in Fuzziness and Soft Computing,Vol.132.Berlin:Springer,2003.
  • 10Xu Y,Ruan D,Liu J.Approximate reasoning based on lattice-valued propositional logic Lvpl[C]//Ruan D,Kerre E E.Fuzzy If-Then Rules in Computational Intelligence:Theory and Applications,Kluwer Academic Publishers,2000:81-105.

共引文献7

同被引文献101

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部