期刊文献+

基于ANFIS方法的连续定向凝固BFe10-1-1合金的压缩流变应力模型 被引量:1

Compressive flow stress model of BFe10-1-1 alloy fabricated by continuous unidirectional solidification process using ANFIS
原文传递
导出
摘要 以连续定向凝固柱状晶组织BFe10-1-1合金在应变速率为0.01~10s^(-1)和变形温度为25~500℃条件下的压缩试验所得实测数据为基础,采用自适应神经网络模糊推理系统(ANFIS)方法,建立了连续柱状晶组织BFe10-1-1合金压缩变形真应力与变形温度、应变速率和真应变关系的预测模型.结果表明:ANFIS模型预测的流变应力值与试验值之间的平均误差为0.75%,均方根误差为2.13,相关系数为0.9996,很好地反映了实际变形过程的特征,而在相同情况下采用传统回归模型预测的平均误差为6.28%,表明ANFIS模型具有优良的预测精度. Based on the compression experimental data of BFe10-1-1 alloy with continuous unidirectionally solidified columnar grains, a prediction model for the relation of true stress to temperature, strain rate and true strain was developed using an adaptive network based fuzzy inference system (ANFIS). The temperature at which the alloy was compressed was from 25 to 500 ℃ with the strain rate ranging from 0.01 to 10s^(-1). Simulation results show that the mean percentage error, root mean square error and correlation coefficient between the ANFIS model and measured data of flow stress are 0.75%, 2.13 and 0.999 6, respectively, indicating that the ANFIS model can well reflect the real feature of the alloy during practical deforming process. In comparison with the regression model, whose mean percentage error is 6.28% under the same condition, ANFIS parades more accurate prediction performance for flow stress.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2011年第5期600-605,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金重点资助项目(No.50674008)
关键词 铜镍合金 压缩变形 柱状晶粒 流变应力 数学模型 自适应神经网络模糊推理系统 copper-nickel alloys compression deformation columnar grains flow stress mathematical models adaptive network based fuzzy inference system
  • 相关文献

参考文献13

  • 1余业球,赵锋,黎沃光.用热型连铸法制造BFe30-1-1白铜管坯[J].特种铸造及有色合金,2005,25(12):761-763. 被引量:6
  • 2余业球,赵锋,黎沃光.热型连铸BFe30-1-1白铜管的组织与性能[J].热加工工艺,2005,34(11):8-9. 被引量:8
  • 3Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater Sei Eng A, 2009, 500(1/2) : 114.
  • 4Takuda H, Morishita T, Kinoshita T, et al. Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures. J Mater Process Technol, 2005, 164/165 : 1258.
  • 5Varol Y, Koea A, Oztop F, et al. Analysis of adaptive-network- based fuzzy inference system (ANFIS) to estimate buoyancy-induced flow field in partially heated triangular enclosures. Expert SystAppl, 2008, 35(4): 1989.
  • 6Hanbay D, Baylar A, Ozpolat E. Predicting flow conditions over stepped chutes based on ANFIS. Soft Comput, 2009, 13 (7) : 701.
  • 7Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew Energy, :2000, 21 (1) : 23.
  • 8Chang F J, Chang Y T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour, 2006, 29 (1): 1.
  • 9Wei M Z, Bai B J, Sung A H, et al. Predicting injection profiles using ANFIS. InfSci, 2007, 177(20) : 4445.
  • 10Leidermark D, Moverare J J, Simonsson K,et al. Room temperature yield behaviour of a single-crystal nickel-base superalloy with tenslon/compression asymmetry. Comput Mater Sci, 2009, 47 (2) : 366.

二级参考文献8

共引文献11

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部