期刊文献+

半群作用的传递属性 被引量:2

The transitivity of semigroup action
下载PDF
导出
摘要 研究了半群作用的传递属性.证明了一个系统是thick传递的当且仅当它是弱混合的,其中作用半群是一个交换的幺半群;此外,还证明了一个几乎周期点稠密的(△syndetic)*传递系统是弱混合的,其中作用半群是一个交换半群. This paper deals with the transitivity of semigroup action.We show that a system is thick transitive if it is weakly mixing,where the semigroup which acts on the space is an abelian monoid.Additionally,we show that a(△syndetic)* transitive system with dense almost period points is weakly mixing,where the semigroup which acts on the space is an abelian semigroup.
出处 《广州大学学报(自然科学版)》 CAS 2011年第2期11-14,共4页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金项目(10771079) 广州市属高校科技计划项目(08C016)资助
关键词 半群作用 传递性 几乎周期点 弱混合 semigroup action transitivity almost period point weakly mixing
  • 相关文献

参考文献9

  • 1DAVID B, ROBERT E, MAHESH N. The topological dynamics of semigroup actions [ J ]. Trans Amer Soc, 2000, 353: 1279-1320.
  • 2AKIN E. Recurrence in topological dynamics: Furstenberg families and Ellis Actions [ M ]. New York: Plenum Press, 1997.
  • 3DEVANEY R. An introduction to chaotic dynamical system[ M]. Red Wood City: Addison-Wesley, 1989.
  • 4KONTOROVICH E, MEGRELISHVILI M. A note on sensitivity of semigroup action[ Jl. Semigroup Forum, 2008, 76: 133-141.
  • 5FURSTENBERG H. Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation [ J ]. Math Syst Theory, 1967,1: 149.
  • 6ZHANG Jing-zhong, XIONG Jin-cheng. Iterated function and one -dimensional dynamical systems[M]. Chengdu: Sichuan Education Press,1992.
  • 7YE Xiang-dong, HUANG Wen, SHAO Song. Topological dynamics[ M]. Beijing: Science Press, 2008.
  • 8AKIN E, AUSLANDER J, GLASNER E. The topological dynamics of Elliss Actions [ M 1. New York: Amer Math Soc, 2008.
  • 9RUELLE D, TAKENS F. On the naturte of turbulence[J]. Comm Math Phys, 1971, 20: 167-192.

同被引文献9

  • 1廖公夫,王立冬,张玉成.一类集值映射的传递性、混合性与混沌[J].中国科学(A辑),2005,35(10):1155-1161. 被引量:13
  • 2Dominik K, Piotr O. Topological entropy and chaos for maps induced on hyperspaces [ J ]. Chaos, Solitons and Fractals, 2007, 33: 76-86.
  • 3David B, Robert E, Mahesh N. The topological dynamics of semigroup actions [J]. Trans Amer Soc, 2000, 353:1279 - 1320.
  • 4Furstenberg H. Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation [J]. Math Syst Theory, 1967, 1: 1-49.
  • 5Huoyun Wang,Xiongwu Long,Heman Fu.Sensitivity and chaos of semigroup actions[J].Semigroup Forum.2012(1)
  • 6Eduard Kontorovich,Michael Megrelishvili.A note on sensitivity of semigroup actions[J].Semigroup Forum.2008(1)
  • 7Balibrea,F,Guirao,J,Oprocha,P.On invariantscrambled sets[].International Journal of Bifurcation andChaos.2010
  • 8Akin,E.Reurrence in Topological dynamical system.Furstenberg Familes and Ellis Actions[].The UniversitySeries in Mathematics.1997
  • 9Ellis,D,Ellis,R,Nerurkar,M.The topologicaldynamics of semigroup actions[].Transactions of theAmerican Mathematical Society.2001

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部