摘要
本文研究了二进求导极大算子的有界性.利用狄利克雷核的重要性质,构造了反例证明此极大算子在一维和二维情况下都不是从Hardy空间Hp到Hardy空间Hp有界的,其中0<p≤1.此结果说明文献[4]中的结论是不正确的.
In this paper,we consider the maximal operator of dyadic derivative.By using property of Dirichlet kernel,we construct a counter-example to prove that the one-and two-dimensional maximal operators are not bounded from the Hardy space Hp to the Hardy space Hp for 0 p ≤ 1.These results enrich some known conclusions and point out that the conclusion in [4] is incorrect.
出处
《数学杂志》
CSCD
北大核心
2011年第3期395-400,共6页
Journal of Mathematics
基金
Supported by Hubei Province Key Laboratory of Systems Science in Metal-lurgical Process(Wuhan University of Science and Technology)(C201016)
National Natural Science Foundation of Pre-Research Item(2011XG005)