期刊文献+

紧区间上高斯核近似逼近误差估计的改进(英文)

IMPROVED ERROR ESTIMATES FOR APPROXIMATE APPROXIMATIONS WITH GAUSSIAN KERNELS ON COMPACT INTERVALS
下载PDF
导出
摘要 本文研究了由高斯核构成的拟插值算子在闭区间上的近似逼近问题.利用函数延拓和近似单位分划的方法,构造了拟插值算子,并得到了一致范数下的逼近阶估计. In this article,we study the approximate approximation for quasi-interpolation operators with Gaussian kernels on a closed interval.By using extension of functions and approxi-mate partition of unity,we construct the operators of quasi-interpolation and obtain the estimates of approximation degree in uniform norm.
作者 陈志祥
出处 《数学杂志》 CSCD 北大核心 2011年第3期401-408,共8页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(10871226)
关键词 近似逼近 高斯核 误差估计 连续模 approximate approximation Gaussian kernels error estimates modulus of continuity
  • 相关文献

参考文献8

  • 1Buhmann M D. Radial basis functions, theory and implementations[M]. Cambridge: Cambridge University Press, 2003.
  • 2Maz'ya V. Boundary point method[A]. LITH-MATH-R-91-44[C]. LinkSping: Link5ping University, 1991.
  • 3Ma'ya V. Approximate approximations[A]. Whiteman J R. The Mathematics of Finite Elements and Applications[C]. New York: Wiley, 1994, 77-104.
  • 4Maz'ya V, Schmidt G. On approximate approximations using Gaussian kernels[J]. IMA J. Num. Anal., 1996, 16(1): 13-29.
  • 5Maz'ya V, Schmidt G. On quasi-interpolation with non-uniformly distributed centers on domains and manifolds[J]. J. Approx. Theory, 2001, 110(2): 125-145.
  • 6Muller F, Varnhorn W. Error estimates for approximate approximations with Gaussian kernels on compact intervals[J]. J. Approx. Theory, 2007, 145(2): 171-181.
  • 7Mitrinovic D S. Analytic inequalities[M]. Berlin: Springer-Verlag, 1987.
  • 8Lorentz G G. Approximation of functions[M]. New York: Holt, Rinehart and Winston, 1966.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部