期刊文献+

基于K-L变换的多维空间数据正态性检验方法及其应用

Normality Testing Method and Its Application of Multidimensional Spatial Data Based on K-L Transformation
下载PDF
导出
摘要 分析了多维数据正态性检验方法及其适用性,研究了适用于多维空间数据正态性检验的基于K-L变换的检验法和基于最小生成树的检验法,并应用蒙特卡罗方法对两种方法进行了对比实验,结果证明基于K-L变换的检验法具有检验准确度高、鲁棒性强、运算速度快等优点。应用基于K-L变换的检验法对某区域连续6年的植被指数和降雨量的差异数据进行了多维正态性检验,进而分析了该区域6年中植被指数和降雨量变化的随机性。 The normality testing method of multidimensional data and its applicability were analyzed.The testing methods for the normality tests of multidimensional spatial data based on Karhunen-Loeve(K-L) transformation and on minimal spanning tree(MST) method respectively were studied and the contrast experiments of these methods were made by using Monte-Carlo method.The results showed that the method based on K-L transformation has advantages,such as high precision,strong robustness and fast calculation,etc.The multidimensional normality testing was made for the difference data of vegetable indices and rainfall in some region in continuous 6 years with the method based on K-L transformation and the randomness of vegetable indices and rainfall variation in 6 years in that region was also analyzed.
出处 《山东科技大学学报(自然科学版)》 CAS 2011年第2期41-47,共7页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(41074003)
关键词 多维空间数据 正态性检验 K-L变换 最小生成树 蒙特卡罗方法 multidimensional spatial data normality testing Karhunen-Loeve(K-L) transformation minimal spanning tree(MST) Monte-Carlo method
  • 相关文献

参考文献15

  • 1李洪成.数据的正态性检验方法及其统计软件实现[J].统计与决策,2009,25(12):155-156. 被引量:15
  • 2潘振宇,赵耐青.一般分布和多元正态分布的检验[J].数理医药学杂志,2006,19(1):53-55. 被引量:4
  • 3汪政红,周清志.两种多元正态性检验方法的应用和比较[J].中南民族大学学报(自然科学版),2009,28(3):99-103. 被引量:10
  • 4SMITH S P,JAIN A K.A test to determine the multivariate normality of a data set[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(5):757-761.
  • 5MARDIA K V.Measures of multivariate skewness and kurtosis with applications[J].Biometrika,1970,57(3):519-530.
  • 6MARDIA K V.Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies[J].Sankhya,Series B,1974,36(2):115-128.
  • 7SRIVASTAVA M S.A measure oi skewness and kurtosis and a graphical method for testing multivariate normality[J].Statistics & Probability Letters,1984,2:263-267.
  • 8KOIZUMI K,OKAMOTO N,SEO T.On Jarque-Bera tests for assessing multivariate normality[J].Journal of Statistics:Advances in Theory and Applications,2009,1:207-220.
  • 9MALKOVITCH J F,AFIFI A A.On tests for multivariate normality[J].Journal of the American Statistical Association,1973,68:176-179.
  • 10纪宏金.多元正态总体假设检验在矿化带识别中的应用[J].长春地质学院学报,1991,21(3):321-326. 被引量:4

二级参考文献22

  • 1Anderson T W. On the Distribution of the Two-Sample Cramerrun Mises Criterion[J].The Annals of Mathematical Statistics,1962, 33(3).
  • 2Lilliefors H.On the KolmogorovSmimov Test for Normality with Mean and Variance Unknown[J].Journal of the American Statistical Association,1967, (62).
  • 3梁小筠.正态性检验[M].北京:中国统计出版社,1996.
  • 4Liang Jiajuan, Ng Wang Kai. A multivariate normal plot to detect nonnormality[J]. Journal of Computational and Graphical Statistics, 2009,18 (1) : 52-72.
  • 5Krishnais. P. R, Handbook of Statistics Vol. 1. North-Holland Publishing Company, 1980,279.
  • 6Shapiro, S. S. and Wilk, M. B. (1965). "An analysis of variance test for normality (complete samples)", Biometrika, 52, 3 and 4, pages 591-611.
  • 7Filliben, J. J. (February 1975), The Probability Plot Correlation Coefficient Test for Normality , Technometrics, pp. 111-117.
  • 8Chakravarti, Laha, and Roy (1967). Handbook of Methods of Applied Statistics, Volume I, John Wiley and Sons, pp. 392-394.
  • 9Snedecor, George W. and Cochran, William G. (1989).Statistical Methods, Eighth Edition, Iowa State University Press.
  • 10G.J. Sze'kely, M.L. Rizzo/Journal of Multivariate Analysis 93 (2005) 58-80.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部