期刊文献+

扭量子环面李代数L_(_Q)[σ]的代数结构 被引量:5

The Algebra Structure of Twisted Quantum Tori Lie Algebras L_(_Q)[σ]
原文传递
导出
摘要 L_(_Q)[σ]是由E_(ij)E_(kl)t_0^(1/2+α_0(m′-1)+l-k)t^(1/2+α),1≤i,j≤m,1≤k,l≤m′,1/2+α=(1/2+α0,…,1/2+α_v)∈(1/2+Z)^(v+1)生成的(M_m(C)M′_m(C))_(C_Q)[σ]的扭量子环面李代数,研究L_(_Q)[σ]的代数结构. Let LCQ[σ] be the Lie subalgebra of generated by the elements of the form …… .In this paper we study the algebra structure of LCQ[σ]..
作者 李立 王辉
出处 《数学的实践与认识》 CSCD 北大核心 2011年第9期225-228,共4页 Mathematics in Practice and Theory
基金 黑龙江省自然科学基金(TA2005-19) 黑龙江省教育厅科学技术研究项目(11551542)
关键词 量子环面 扭量子环面 李代数 代数结构 quantum tori twisted quantum tori lie algebras algebra structure
  • 相关文献

参考文献6

二级参考文献13

  • 1郑兆娟,谭绍滨.一类量子环面李代数的自同构群[J].数学学报(中文版),2007,50(3):591-600. 被引量:3
  • 2Berman S, Gao Y, Tan S. A unified view of some vertex operator constructions[ J]. Israel J Math, 2003,134:29 -60.
  • 3Allison B N, Azam S, Berman S, et al. Extended affine Lie algebras and their root systems[J]. Memoir Amer Math Soc, 1997,126: 605.
  • 4Feingold A J, Frenkel I B. Classical affine Lie algebras[ J ]. Advances in Math, 1985,56:117 -172.
  • 5Kac V G. In finite Dimensional Lie algebras[ M]. 2nd ed. Cambridge:Cambridge University Press, 1985.
  • 6BenKart G, Kang S J, Misra K C. Graded Lie algebras of Kac-Moody type [J]. Adv. in Math. (China),1993, 97(2): 154-190.
  • 7BenKart G, Kang S J, Misra K C. Infinite Kac-Moody algebras of classical type [J]. Adv in Math. (China),to appear.
  • 8Lu Caihui. The imaginary root system of Kac-Moody algebra IAn-1(a) [Z]. Communication in Algebra. 1996, 24(1): 29-54.
  • 9Zhang Hechun, Zhao Kaiming. Root systems of a class of Kac-Moody algebras [J]. to appear in Algebra Colloquium, 1994, 4.
  • 10Kac V G. Infinite Dimensional Lie Algebras [M]. Second edition, Cembriage University Press, 1985.

共引文献8

同被引文献14

  • 1李立,王书琴.IX_r(a)的有限型IX_r~°(a)的未定Weyl群[J].数学进展,2005,34(5):619-626. 被引量:6
  • 2S Berman, Y Gao and S Tan.A unified view of some vertex operator constructions [J]. Is rael J. Math. 134 (2003),29- 60.
  • 3J. Lepowsky and H.-S. Li, Introduction to Vertex Operator Algebras and Their Representations[C]//Progress in Math., Vol. 227,Birkh Hauser, Boston ,2003.
  • 4Berman S,Gao Y,Tan S.A unified view of some vertex operator constructions[J].Israel J.Math,2003,134(1):29-60.
  • 5LiLi,Chunyan Wang,Xiufeng Du.Clifford algebra realization of certain infinite-dimensional Lie algebras[J].Algebra Colloquium,2011,18(1):105-120.
  • 6Kac-Moody.代数导引[M].北京:科学出版社,1993.
  • 7S.Berman Y.Gao and S.Tan,A unified view of some vertex operator constructions[J].Israel J Math.2003,134:29-60.
  • 8LiLi,ChunyanWang,Xiufeng Du,Clifford algebra realization of certain infinite-dimensional Lie algebras[J].Algebra Colloquium,2011,18(1):105-120.
  • 9王春艳,李立,堵秀凤.算子李代数g(G,M)[σ][J].齐齐哈尔大学学报(自然科学版),2007,23(6):60-63. 被引量:6
  • 10Berman S,Gao Y,and Tan S.A unified view of some vertex operator constructions,Israel J.Math,2003,134:29-60.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部