期刊文献+

脱氮过程中短程亚硝化工艺主导因子及最佳运行参数分析

ANALYSIS OF DOMINANT FACTORS AND OPTIMAL OPERATION PARAMETERS FOR NITROGEN REMOVAL BY SHORTCUT NITRIFICATION
下载PDF
导出
摘要 以匹配后续厌氧氨氧化主体脱氮工艺进水为目的,采用亚硝酸型硝化工艺进行前期脱氮预处理。在前期试验及动力学分析基础上,利用带动量的自适应学习速率梯度下降算法,建立BPNN模型,预测系统温度、进水pH、碱度、进水氨氮质量浓度、曝气量5个生态因子对亚硝化过程影响。采用分割连接权值(PCW)和偏导数(PaD)2种方法,定量化分析网络各层神经元的连接权值,明确了既定进水条件下,匹配厌氧氨氧化的短程亚硝化过程主导因子依次为曝气量、温度及碱度。采用遗传算法对已建立BPNN模型寻优,结果表明系统最优运行参数为:温度28.5℃、进水pH为8.34、进水碱度值6 777 mg.L-1,进水氨氮质量浓度1 215.8 mg.L-1、曝气量0.24 m3.h-1,与实际试验具有较好一致性。同时表明加大曝气量可以一定程度上降低温度要求。 nitrous nitrification process is adopted as the primary denitrification treatment to mach' the subsequent denitrification of ANAMMOX. Based on large quantities of tests performed by the author at early stage, dynamic analysis and partial engineering applications, self-adaptive learning rate gradient descent algorithm with momentum is used for building BPNN model, in order to forcast the influence of five ecological factors including system temperature, influent pH, alkalinity, infiuent ammonia nitrogen concentration and aeration rate on nitrification process. Two approaches including partitioned connection weight (PCW) and partial derivative (PAD) are used for quantitative analysis of connection weights of neurons at each layer of network, in order to determine the dominant factors for shortcut nitrification process mached by anammox as aeration rate ,temperature and alkalinity according to priority. In the end, genetic algorithm optimizes built BPNN model. The results show that the optimal operation parameters of the system include temperature of 28.5 ~C, influent pH value of 8.34, influent alkalinity of 6 777 mg. L-1, influent concentration of 1 215.8 mg-L-1 and aeration rate of 0.24 m3.h-1.They are well consistent with actual test. Meanwhile, the results further show that improve aeration rate help to reduce temperature requirement.
作者 朱杰 张成甫
出处 《水处理技术》 CAS CSCD 北大核心 2011年第5期22-25,共4页 Technology of Water Treatment
基金 国家社会科学基金"流域水环境预警及容量分配研究-以沱江流域为例"基金支持(07CJY027) 四川省公益项目"畜禽养殖废水脱氮新工艺研究"项目支持(2007SGY034)
关键词 BP神经网络 遗传算法 短程亚硝化 主导因子 最佳运行参数 厌氧氨氧化 BP neural network genetic algorithm shortcut nitrification dominant factors optimal operation parameters anammox
  • 相关文献

参考文献8

  • 1高克强,高怀友.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004:1-20.
  • 2郑武,谢晓丽,陈仁忠,黎珠妹,潘东花,胡殿安,何述尧.广州市畜牧业废水排放与治理现状分析[J].农业环境与发展,1998,15(2):17-20. 被引量:22
  • 3刘昕.保护环境.实现畜禽养殖业可持续发展[C].2004中国猪业发展大会,合肥:2004.
  • 4So-Hyun Joo, Dong-Jin Kim, Ik-Keun Yoo, et al.Partial nitrification in an upflow biological aerated filter by O2 limitation [J]. Biotechnology Letters,2000,22(11):937-940.
  • 5于德爽,彭永臻,张相忠,崔有为,孔范龙,刘栋.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003,19(1):40-42. 被引量:62
  • 6Ciudad G, Rubilar O, Munoz P, et al. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process [J].Proeess Biochemistry,2005,40 (5): 1715-1719.
  • 7李峥,王爱杰,任南琪,王文静,徐岩.基于BPNN模型的微生物群落演替主导因子分析[J].中国环境科学,2005,25(2):205-209. 被引量:2
  • 8Carrol S-M, Dickinson W. Construction of neural nets using radom transform[J].Proc IJCNN, 1989(1 ):607-611.

二级参考文献9

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部