期刊文献+

插值多项式在一重积分Wiener空间下的同时逼近平均误差 被引量:17

The simultaneous approximation average errors for interpolation polynomials on the 1-fold integrated Wiener space
原文传递
导出
摘要 本文在加权Lp范数逼近意义下确定了基于第一类Chebyshev结点组的Lagrange插值多项式列在一重积分Wiener空间下同时逼近平均误差的渐近阶.结果显示在Lp范数逼近意义下Lagrange插值多项式列的平均误差弱等价于相应的最佳逼近多项式列的平均误差.同时,当2p4时,Lagrange插值多项式列导数逼近的平均误差弱等价于相应的导数最佳逼近多项式列的平均误差.作为对比,本文也确定了相应的Hermite-Fejér插值多项式列在一重积分Wiener空间下逼近的平均误差的渐近阶. For the weighted Lp-norm approximation,we determine the asymptotical order for the simultaneous approximation average errors of Lagrange interpolation sequence based on the Chebyshev nodes on the 1-fold integrated Wiener space.By our results we know that the average errors of Lagrange interpolation sequence are weakly equivalent to the average errors of the corresponding best polynomial approximation sequence for Lp-norm approximation.At the same time,the average errors of the derivative approximation by Lagrange interpolation are weakly equivalent to the average errors of the corresponding best polynomial approximation sequence for Lp-norm approximation (2≤p≤4).In comparison with these results,we determine asymptotical order of the average errors of the corresponding Hermite-Fejér interpolation sequence.
作者 许贵桥
出处 《中国科学:数学》 CSCD 北大核心 2011年第5期407-426,共20页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10471010)资助项目
关键词 LAGRANGE插值 一重积分Wiener空间 平均误差 Lagrange interpolation 1-fold integrated Wiener space average error
  • 相关文献

参考文献1

二级参考文献9

  • 1Lorentz GG.Bernstein Polynomials. . 1953
  • 2Traub JF,Wasilkowski GW,Wozniakowski H.Information-Based Complexity. . 1988
  • 3Varma A K,Prasad J.An analogue of a problem of p Erd s and e Feldheim on lp convergence of interpolatory process. Journal of Approximation Theory . 1989
  • 4Ritter,K.Approximation and optimization on the Wiener space. Journal of Complexity . 1990
  • 5Ritter K.Average-case analysis of numerical problems. Lecture Notes in Mathematics . 2000
  • 6Sun Y.S,Wang C.Y.Average error bounds of best approximation of continuous functions on the Wiener space. Journal of Complexity . 1995
  • 7VarmaAK,VertesiP.SOmeErdos-FeldheimtypetheoremsonmeanconvergenceofLagrangeinterpolation. JMathAnalAppl . 1983
  • 8DEVORE R A,LORENTZ G G.Constructive Approximation. . 1993
  • 9Bojanic R,Prasad J,Saxena R B.An upper bound for the rate of convergence of the Hermite-Fejr process on the extended Chebyshev nodes of the second kind. Journal of Approximation Theory . 1979

共引文献13

同被引文献47

  • 1XU GuiQiao,DU YingFang.The average errors for Hermite-Fejr interpolation on the Wiener space[J].Science China Mathematics,2010,53(7):1837-1848. 被引量:14
  • 2杨士俊,王兴华.Hermite插值多项式的差商表示及其应用[J].高校应用数学学报(A辑),2006,21(1):70-78. 被引量:13
  • 3RITTER K. Average-case Analysis of Numerical Problems[M]. New York: Springer-Verlag, 2000.
  • 4ERDOS P, FELDHEIM E. Sur le mode de convergence pour 1 interpolation de Lagrange[J]. C R Acad Sci Paris Ser I Math, 1936, 203: 913-915.
  • 5KLAUS R. Average-Case Analysis of Numerical Problems[M]. Berlin: Springer-Verlag, 2000.
  • 6ERDOS P, FELDHEIM E. Sur le mode de convergence pour l'interpolation de Lagrange[J]. C R Acad Sci Paris Ser I Math, 1936, 203: 913 -915.
  • 7FEJER L. Lagrangesehe interpolation und zugehorigen konjugierten punket[J]. Math Ann, 1932, 106:1 -55.
  • 8VARMA A K, PRASAD J. An analogue of a problem of P. Eros and E. Feldheim on convergence of interpolatory processes[J]. J Approx Theory, 1989, 56: 225-240.
  • 9Erd6s P, Feldheim E. Sur le mode de convergence pour 1' interpolation de Lagrange [ J]. C R Acad Sci Paris S6r I Math, 1936, (203) :913 - 915.
  • 10陈传璋,金福临,等.数学分析(第二版)[M].上海:科学技术出版社,1962.

引证文献17

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部