期刊文献+

基于启发式变量筛选方法研究与雌激素β受体结合的化合物结构与活性之间的关系 被引量:1

Quantitative structure-activity relationship of compounds binding to estrogen receptor β based on heuristic method
原文传递
导出
摘要 雌激素类化合物由于其对人和野生动物健康的负面影响而受到广泛关注.雌激素受体存在两种亚型(ERα和ERβ),化合物与两种受体亚型在结合活性和化合物结构特征方面存在差异.以31种与雌激素β受体亚型(ERβ)结合的化合物为研究对象,采用启发式变量筛选方法,从1524个变量中筛选出5个与化合物活性(lgRBA)最相关的变量,然后采用多元线性回归(MLR)建立最佳预测模型.模型相关性显著,而且具有良好的稳健性和预测能力(r2=0.829,q2LOO=0.742,r2pred=0.772,q2ext=0.724,RMSEE=0.395).同时揭示了影响化合物与ERβ受体结合的配体化合物分子的结构特征,并对模型的应用域进行了研究. Estrogen compounds may pose a serious threat to the health of humans and wildlife. The estrogen receptor (ER) exits as two subtypes, ERα and ERβ. Compounds might have different relative affinities and binding modes for ERα and ERβ. In this study, heuristic method was performed on 31 compounds binding to ERβ to select 5 variances most related to the activity (LogRBA) from 1524 variances, which were then employed to develop the best model with the significant correlation and the best predictive power (r2 = 0.829, q2LOO = 0.742, r2pred = 0.772, q2ext = 0.724, RMSEE = 0.395) using multiple linear regression (MLR). The model derived identified critical structural features related to the activity of binding to ERβ. The applicability domain (AD) of the model was assessed by Williams plot.
出处 《中国科学:化学》 CAS CSCD 北大核心 2011年第5期893-899,共7页 SCIENTIA SINICA Chimica
基金 南京医科大学科技发展基金重点项目(09NJMUZ16)资助
关键词 雌激素β受体(ERβ) 定量结构与活性相关(QSAR) 启发式变量筛选 模型应用域 estrogen receptor β (ERβ) quantitative structure-activity relationship (QSAR) heuristic method applicability domain
  • 相关文献

参考文献24

  • 1Kavlock RJ, Daston GP, Derosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the U.S. EPA-sponsored workshop. Environ Health Perspect, 1996, 104 (suppl 4): 715-740.
  • 2Diel P. Tissue-specific estrogenic response and molecular mechanisms. Toxicol Lett, 2002, 127:217-224.
  • 3Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95:927-937.
  • 4Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair R, Branham W, Sheehan D. QSAR models using a large diverse set of estrogens. J Chem lnf Comput Sci, 2001, 41:186-195.
  • 5Liu H, Papa E, Gramatica P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol, 2006, 19:1540-1548.
  • 6Marini F, Roncaglioni A, Novic M. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders. J Chem Inf Model, 2005, 45:1507-1519.
  • 7杨旭曙,王晓栋,季力,李荣,孙成,王连生.分子对接结合比较分子相似性指数分析用于雌激素类化合物活性预测和分子机理研究[J].科学通报,2008,53(22):2735-2741. 被引量:2
  • 8季力,王晓栋,杨旭曙,刘树深,王连生.遗传算法结合共轭梯度法改进BP算法人工神经网络用于环境雌激素的QSAR研究[J].科学通报,2007,52(18):2116-2121. 被引量:5
  • 9Asikainen A, Ruuskanen J, Tuppurainen K. Consensus kNN QSAR: A versatile method for predicting the estrogenic activity of organic compounds in silico. A comparative study with five estrogen receptors and a large diverse set of ligands. Environ Sci Technol, 2004, 38: 6724-6729.
  • 10Tong W, Perkins P. QSAR models for binding of estrogenic compounds to estrogen receptor ct and 13 subtypes. Endocrinology, 1997, 138: 4022-4025.

二级参考文献52

  • 1王晓栋,肖乾芬,崔世海,刘树深,尹大强,王连生.分子全息QSAR预测环境污染物的雌激素活性[J].中国科学(B辑),2005,35(1):58-63. 被引量:5
  • 2Kavlock R J, Daston G P, Derosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the US. EPA-sponsored workshop. Environ Health Perspect, 1996, 104 (suppl 4): 715-740
  • 3Diel P. Tissue-specific estrogenic response and molecular mechanisms. Toxicol Lett, 2002, 127:217-224
  • 4Waller C L, Mckinney J D. Comparative molecular field analysis of polyhalogenated dibenzo-p-dioxins, dibenzofurans, and biphenyls. J Med Chem, 1992, 35:3660-3666
  • 5Shi L M, Fang H, Tong W, et al. QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci, 2001, 41:186-195
  • 6Liu H, Papa E, Gramatica P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol, 2006, 19:1540-1548
  • 7Cramer R D, Patterson D E, Bunce J D. Comparative molecular fields analysis (CoMFA). Ⅰ . Effect of shape on binding of steroids to carrier proteins. J Amer Chem Soc, 1988, 110:5959-5967
  • 8Yu S J, Keenan S M, Tong W, et al. Influence of the structural diversity of data sets on the statistical quality of 3D-QSAR Models: Predicting the estrogenic activity of xenoestrogens. Chem Res Toxicol, 2002, 15(10): 1229-1234
  • 9Waller C L. A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. J Chem Inf Comput Sci, 2004, 44:758-765
  • 10Klebe G, Abraham U, Mietzner T. Molecular similarity in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem, 1994, 37:4130-4146

共引文献7

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部