期刊文献+

新型双吸收层光探测器量子效率的理论分析 被引量:2

Theoretical Analysis of Quantum Efficiency of Novel Dual-Absorption Photodetector
原文传递
导出
摘要 随着光纤通信技术的发展,高量子效率、高速响应光电探测器在长距离高速光纤通信系统中的作用尤显突出。利用传输矩阵法(TMM)对新型双吸收层光电探测器(RCE-PINIP)的量子效率进行了理论计算,然后对其进行了相应的理论仿真。结果显示,在50~800nm厚度范围内,随着双吸收层厚度逐渐变大,RCE-PINIP模型的量子效率会出现多个峰值,量子效率的峰值先增大到最大值,在两个单吸收层厚度同为325nm时,量子效率达到98.6%,然后峰值逐渐递减。在两个单吸收层厚度分别固定为325nm时,量子效率随另一个单吸收层厚度的变化关系几乎相同。针对这个RCE-PINIP模型结构,通过对两个单吸收层厚度分别进行优化,得到了一个能实现高量子效率的优化结构模型。 With the development of optical fiber communication technologies, high quantum efficiency and high speed photodetectors are more and more essential for long-hual high-bit-rate optical communication systems. The quantum efficiency (QE) of novel dual-absorption resonant cavity enhanced photodetector (RCE-PINIP) is calculated theoretically using transfer matrix method (TMM) and the results are simulated. It is revealed that with the gradual increase of dual-absorption layer thickness in the 50--800 nm range, there will emerge several QE peaks for this RCE-PINIP structure model. And the QE peak firstly increases to the highest value (98.6 % ) when the thickness of two single absorption layers is both 325 nm, and then the peak gradually decreases. When the thickness of two single absorption layers is fixed at 325nm respectively, dependences of QE on the thickness of other single absorption layer are almost the same. So for this RCE-PINIP model structure, after the optimizations on the thickness of both single absorption layer thickness, an optimized structure which can achieve high QE is obtained.
出处 《激光与光电子学进展》 CSCD 北大核心 2011年第5期114-116,共3页 Laser & Optoelectronics Progress
基金 国家973计划(2010CB327600) 国家863计划(2009AA03Z405 2009AA03Z417) 111计划(B07005) 国际科技合作重点计划项目(2006DFBllll0) 新世纪优秀人才支持计划(NCET-08-0736) 长江学者和创新团队发展计划(IRT0609) 中央高校基本科研业务费专项资金(BUPT2009RC0409 BUPT2009RC0410)资助课题
关键词 探测器 双吸收层光探测器 优化结构模型 传输矩阵法 量子效率 detector dual-absorption photodetector optimized structure mode transfer matrix method quantum efficiency
  • 相关文献

参考文献8

  • 1R. Sankaralingam, P. Fay. Drift-enhanced dual-absorption PIN photodiodes[J]. IEEE Photon. Technol. Lett. , 2005, 17(7) : 1513-1515.
  • 2R. Sankaralingam, P. Fay. High bandwidth-efficiency long-wavelength PIN photodiodes[C]. International Conference on Indium Phosphide and Related Materials, 2005. 152-155.
  • 3F. J. Effenberger, A. M. Joshi. Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector[J]. Lightwave Technol. , 1996, 14(8): 1859-1864.
  • 4Peng Fu, Yongqing Huang, Xiaofeng Duan et al.. A novel dual-absorption resonant cavity enhanced photodetectors[C]. Technical Digest, Optical Society of America (2009), paper WL42.
  • 5杨一粟,黄永清,黄辉,王琦,任晓敏.一种具有亚波长光栅结构的光探测器的设计[J].中国激光,2009,36(9):2352-2357. 被引量:14
  • 6S. V. Gryshchenko, H. H. Demina, V. V. Lysak. Quantum efficiency and reflection in resonant cavity photodeetor with anomalous dispersion mirror[C]. CAOL, 2008. 229-232.
  • 7谢媛,王娅娜,刘维,卢承振,蓝天,马国永,关天帅,黄鑫.砷化镓光导开关的比较研究[J].激光与光电子学进展,2010,47(6):37-42. 被引量:6
  • 8倪争技,陈麟,王淑玲,张大伟,何波涌,朱亦鸣.砷化镓内电子谷间散射引起的增益[J].中国激光,2010,37(3):658-662. 被引量:6

二级参考文献67

共引文献22

同被引文献18

  • 1Ishibashi T, Kodama S, Shimizu N, et al.. High-speed response of uni-traveling-carrier photodiodes[J]. Jpn J Appl Phys, 1997, 36(10): 6263-6268.
  • 2Ishibashi T, Furuta T, Fushimi H, et al.. InP/InGaAs uni-traveling-carrier photodiodes[J]. IEICE Trans Electron, 2000, E83-C(6): 938-949.
  • 3Ito H, Kodama S, Muramoto Y, et al.. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes[J]. IEEE J Sel Top Quantum Electron, 2004, 10(4): 709-727.
  • 4Wang X, Duan N, Chen H, et al.. InGaAs-InP photodiodes with high responsivity and high saturation power[J]. IEEE Photon Technol Lett, 2007, 19(16): 1272-1274.
  • 5Chtioui M, Enard A, Carpentier D, et al.. High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links[J]. IEEE Photon Technol Lett, 2008, 20(3): 202-204.
  • 6Tuo Shi, Bing Xiong, Changzheng Sun, et al.. Study on the saturation characteristics of high-speed uni-travelling-carrier photodiodes based on field screening analysis[J]. Chin Opt Lett, 2011, 9(8): 082302.
  • 7X Li, N Li, S Demiguel, et al.. A partially depleted absorber photodiode with graded doping injection regions[J]. IEEE Photon Technol Lett, 2004, 16(10): 2326-2328.
  • 8Mourad Chtioui, Francois Lelarge, Alain Enard, et al.. High responsivity and high power UTC and MUTC GaInAs-InP photodiodes[J]. IEEE Photon Technol Lett, 2012, 24(4): 318-320.
  • 9N Li, X Li, S Demiguel, et al.. High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode[J]. IEEE Photon Technol Lett, 2004, 16(3): 864-866.
  • 10H Pan, A Beling, H Chen, et al.. Characterization and optimization of high-power InGaAs/InP photodiodes[J]. Opt Quantum Electron, 2008, 40(1): 41-46.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部