期刊文献+

基于蚁群神经网络的财务危机预警方法 被引量:9

Ant Colony Algorithms and Neural Network Based Early-warning System for Enterprise Financial Distress
原文传递
导出
摘要 为了克服神经网络财务危机预警方法收敛慢、不收敛和网络结构难以确定等缺陷,提出了基于蚁群算法的改进神经网络财务危机预警方法。将神经网络模型的结构和参数进行编码,利用蚁群算法确定若干个神经网络模型的结构和参数,然后通过评价函数得到神经网络的最佳结构,最后通过BP算法训练该神经网络,得到神经网络财务危机预警模型。验证结果表明,该模型结构简单、预警精度高。 In order to overcome the defects of the neural network early-warning system for enterprise financial distress including slow convergence,non-convergence and difficulty in determining network structure, the improved neural network early-warning method for enterprise financial distress based on ant colony algorithm is presented.First,the structure and parameters of the neural network is encoded. Some structures and initiating parameters of neural network are obtained by the ant colony algorithm. Then,the optical structure of neural network is determined by means of the evaluation function.Finally, the neural network is trained through BP algorithm and the neural network early-warning model for enterprise financial distress is got.The experiment results show that the model has simple structure and lower error rate.
出处 《数理统计与管理》 CSSCI 北大核心 2011年第3期554-561,共8页 Journal of Applied Statistics and Management
基金 国家自然科学基金资助(70772026) 中国博士后科学基金资助项目(20090461204)
关键词 财务危机 预警 神经网络 蚁群算法 financial distress early-warning neural network ant colony algorithm
  • 相关文献

参考文献13

  • 1Beaver W H. Financial ratios as predictors of failure [J]. Journal of Accounting Research, 1966, 4(1): 71-102.
  • 2Altman E. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy [J]. Journal of Finance, 1968, 23(4): 589 610.
  • 3Martin D. Early warning of bank failure: A logit regression approach [J]. Journal of Banking and Finance, 1977, 1(3): 249 276.
  • 4Zmijewski M E. Methodological issues related to the estimated of financial distress predict ion models [J]. Journal of Accounting Research, 1984, 22(1): 59- 82.
  • 5Coats P, Fant L. Recognizing financial distress patterns using a neural network tool [J]. Financial Management, 1993, 22(3): 142-155.
  • 6杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18. 被引量:202
  • 7Liang L, Wu D S. An application of pattern recognition on scoring Chinese financial conditions based on back propagation neural network [J]. Computers & Operations Research, 2005, 32(5): 1115-1129.
  • 8Malhotra R, Malhotra D K. Differentiating between good credits and bad credits using neural-fuzzy systems [J]. European Journal of Operational Research, 2002, 136(1): 190-211.
  • 9李秉祥.基于模糊神经网络的企业财务危机非线性组合预测方法研究[J].管理工程学报,2005,19(1):19-23. 被引量:21
  • 10吴冬梅,朱俊,庄新田,杨霖.基于支持向量机的财务危机预警模型[J].东北大学学报(自然科学版),2010,31(4):601-604. 被引量:17

二级参考文献32

  • 1林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 2徐晓燕,王昱,张斌.一种集成logistic回归与支持向量机的判别分析规则[J].系统工程理论与实践,2007,27(4):41-46. 被引量:13
  • 3Beaver W H. Financial ratios as predictors of failure [ J ]. Journal of Accounting Research, 1966,4( 1 ) : 71 - 102.
  • 4Altman L. Financial ratios, discriminate analysis and prediction of corporate bankruptcy[J]. Journal ofFinance, 1968,23(9):589 - 609.
  • 5Ohlson J A. Financial ratios and the probabilistic prediction of bankruptcy[J]. Journal of Accounting Research, 1980, 18 (1):109-131.
  • 6Zmijewski M E. Methodological issues related to the estimated of financial distress prediction models [ J ]. Journal of Accounting Research, 1984,22( 1 ) : 59 - 82.
  • 7Fan A, Palaniswami M. Selecting bankruptcy predictors using a support vector machine approach [ C] //Proceedings of the International Joint Conference on Neural Network. Como: IEEE-INNS-ENNS, 2000:345 - 352.
  • 8Tay F E H, Gao L. Application of support vector machines in financial time series forecasting [ J ]. Omega, 2001,29 ( 3 ) : 309 - 317.
  • 9Altman E I. Edward. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance, 1968,23 : 589 - 609.
  • 10Eisenbeis R A. Pitfalls in the application discriminant analysis in business and economics[ J]. The Journal of Finance, 1997,32:875-900.

共引文献258

同被引文献105

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部