期刊文献+

基于前景概率函数的目标跟踪 被引量:1

Object Tracking Based on Foreground Probability Function
下载PDF
导出
摘要 针对不规则目标跟踪中初始窗口内包含背景像素导致特征模板不准确的问题,提出前景概率函数以及基于前景概率函数的目标跟踪算法.首先根据目标所在区域与背景区域的颜色分布建立前景概率函数,并以此计算目标区域中像素的前景概率,削弱背景像素的干扰,得到更准确的目标特征模板.将目标区域像素的前景概率引入均值迁移跟踪框架中,实现目标的迭代定位;在跟踪收敛后重新计算收敛区域中的前景概率分布,根据其反向投影图的尺度变化调整跟踪窗宽;最后利用Bhattacharyya相关系数对目标特征模板进行自适应更新.实验表明,该算法能够有效抑制背景像素的干扰,在目标尺度变化时能够准确调整跟踪窗宽,减少迭代次数,满足实时跟踪的需要.在复杂背景中跟踪性能也始终优于传统的均值迁移跟踪算法. In irregular object tracking,the precise model is not available because of the pixels belong to background in the tracking box.A novel tracking method based on foreground probability function is proposed to solve the problem above.Firstly,the foreground probability function is constructed to calculate the foreground probability of each pixel in tracking box, according to the color distribution of the foreground and the background region nearby.A precise model is obtained because the background pixels are excluded.Secondly,the foreground probability map is introduced to the mean shift framework to track with the object.After a tracking unit is completed,the scale of the tracking box is adjusted according to the new foreground probability map.Finally,the Bhattacharyya coefficient of the adjacent frames is used to modify the object model adaptively.Experimental results show that the foreground probability function is effective to suppress the compactness of the background pixels in the tracking box. Compared with the conventional tracker,the proposed tracker is robust to the scale change,and needs less iteration,which meets real-time tracking condition.In the tracking test of video sequence with complex background,the new tracker works better then conventional mean shift algorithm.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第4期441-446,共6页 Transactions of Beijing Institute of Technology
基金 "九八五"工程学科建设投资项目(107008200400020)
关键词 目标跟踪 前景概率函数 均值迁移 Bhattacharyya相关系数 object tracking foreground probability function mean shift Bhattacharyya coefficient
  • 相关文献

参考文献13

  • 1Hager G D, Dewan M, Stewart C. Multiple kernels tracking with SSD[J]. Computer Vision and Pattern Recognition, 2004(1) :791- 797.
  • 2Shin J, Kim S, Kang S. Optical flow based real-time object tracking using non-prior tracking active feature model[J]. Real-Time Image, 2005,11(3) :204 - 218.
  • 3Maggio E, Cavallaro A. Accurate appearance based Bayesian tracking for maneuvering targets [J].Computer Vision and Image Understanding, 2009,113 : 544 - 555.
  • 4姚红革,齐华,郝重阳.复杂情形下目标跟踪的自适应粒子滤波算法[J].电子与信息学报,2009,31(2):275-278. 被引量:9
  • 5张涛,蔡灿辉.基于多特征Mean Shift的人脸跟踪算法[J].电子与信息学报,2009,31(8):1816-1820. 被引量:10
  • 6Comaniciu D, Meer P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(5) :564 - 577.
  • 7王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 8Yilmaz A. Object tracking by asymmetric kernel Mean Shift with automatic scale and orientation selection[C]//Proceedings of Computer Vision and Pattern Recognition, CVPR'07. Minneapolis, USA: [s. n. ], 2007: 1211 - 1218.
  • 9Collins R T. Mean-shift blob tracking through scale space [C] // Proceedings of IEEIE Computer Society Conference on Computer Vision and Pattern Recognition. [S. l. ] : IEEE, 2003 : 234 - 240.
  • 10Sheikh Y, Shah M. Bayesian modeling dynamic scenes for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27: 1778 - 1792.

二级参考文献35

  • 1Kwok C, Fox D, and Meila M. Real-time particle filters [J]. Proce. IEEE, 2004, 92(3): 469-484.
  • 2Arulampalam S, Maskell S, Gordon N J, and Clapp T. A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188.
  • 3Yoshinori Satoh, Takayuki Okatani, and Koichiro Deguchi. A color-based tracking by kalman particle filter [C]. IEEE Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, United Kingdom. 2004: 502-505.
  • 4Zhou S K, Chellappa R, and Moghaddam B. Visual tracking and Recognition using appearance-adaptive models in particle filters [J]. IEEE Trans. on Image Processing, 2004, 13 (11): 1491-1506.
  • 5Koichiro Deguchi, Oki Kawanaka, and Takayuki Okatani. Object tracking by the mean-shift of regional color distribution combined with the particle-filter algorithm [C]. Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, United Kingdom, 2004: 506-509.
  • 6Jia J P, Wang Q, and Chai Y M. Object tracking by multidegrees of freedom mean shift procedure combined with the Kalman particle filter algorithm [C]. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian, China, 2006: 3793-3797.
  • 7Kailath T. The Divergence, Bhattacharyya distance measures in signal selection [J]. IEEE Trans. on Comm. Technology, 1999, 15(2): 253-259.
  • 8Comaniciu D and Meer P. Mean shift: A robust application toward feature space analysis [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 9Comaniciu D and Meer P. Kernel-based object tracking [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 10Comaniciu D,Ramesh V,and Meer P.Real time tracking of non-rigid objects using mean shift[C].Computer Vision and Pattern Recognition,Hilton Head Island,SC,USA,Jun.13-15,2000,Vol.2:142-149.

共引文献69

同被引文献6

  • 1Fukonage K,Hostetler L D. The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Transactions on Information theory,1975,(01):32-40.
  • 2Cheng Y. Mean shift,mode seeking and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(08):790-799.doi:10.1109/34.400568.
  • 3Comanieiu D,Meer P. Mean shift analysis and applications[A].Kerkyra,Greece:IEEE,1999.1197-1203.
  • 4Comaniciu D,Ramesh V,Meer P. Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(05):564-577.doi:10.1109/TPAMI.2003.1195991.
  • 5姚红革,齐华,郝重阳.复杂情形下目标跟踪的自适应粒子滤波算法[J].电子与信息学报,2009,31(2):275-278. 被引量:9
  • 6康一梅,谢晚冬,胡江,黄琪.目标尺度自适应的Mean Shift跟踪算法[J].兵工学报,2011,32(2):210-216. 被引量:12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部