期刊文献+

一个新的关联规则兴趣度度量方法 被引量:10

A New Interestingness Measure Method for Mining Association Rules
下载PDF
导出
摘要 联规则挖掘是数据挖掘和知识发现领域的重要课题,但就判定关联规则是否成立的依据,即兴趣度的度量方法问题,学术界没有一致的标准。既有的兴趣度度量方法包括支持度-置信度方法,提升度方法,卡方分析方法等。这些传统的兴趣度度量方法存在各自的局限,表现为缺乏客观标准,缺少统计依据,只能度量正向关系等方面。为了克服这些问题,本文提出了一种基于统计推断的新的兴趣度度量方法,并对该方法与传统的方法进行了比较,证明了该度量公式的渐进分布形式,指出了新方法的优点,实证了新方法的特征属性。该方法用于关联规则挖掘,在判断规则成立的标准上是客观的,可以判定正负关联两种类型,在实际应用上是方便的,具有可操作性,较之原有方法有一定的优势。 Discovering association rules is an important topic in the field of data mining and knowledge discovering. However,a unitive interestingness measure has not been proposed,which is a criterion that decides whether the rule is right or not.Plentiful papers have discussed interestingness measure methods such as support-confidence,lift,chi-square analysis and so on.Each traditional measure method has its flaws,like no objective criterion,lack of statistical base, disability of defining negative relationship etc.,so a new interestingness measure is created based on statistical inference in this paper.Comparisons are made between the traditional and the new one,and meanwhile a proof is given to explain the distribution of the new measure formula.In conclusion,the new method is prior to the traditional ones in the aspects of objective criterion,comprehensive definition and convenient application.
出处 《情报学报》 CSSCI 北大核心 2011年第5期503-507,共5页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金项目(60979016)
关键词 数据挖掘 关联规则 兴趣度度量 统计推断 data mining association rules interesting measure statistical inference
  • 相关文献

参考文献12

二级参考文献68

  • 1苏占东,游福成,杨炳儒.关联规则的综合评价方法研究与实例验证[J].计算机应用,2004,24(10):17-20. 被引量:27
  • 2伊卫国,卫金茂,王名扬.挖掘有效的关联规则[J].计算机工程与科学,2005,27(7):91-94. 被引量:9
  • 3窦祥国,胡学钢.关联规则的评价方法研究[J].安徽技术师范学院学报,2005,19(4):44-47. 被引量:5
  • 4马建庆,钟亦平,张世永.基于兴趣度的关联规则挖掘算法[J].计算机工程,2006,32(17):121-122. 被引量:20
  • 5JHanMkamber著 范明等译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 6Brin S,Motwani R,Ullman J D,et al.Dynamic itemset counting and implication rules for market basket data[C]//Proceedings of the ACM SIGMOD Conf on Management of Data Tucsom, USA, 1997:207-216.
  • 7Merz C J,Murphy P.UCI repository of machine learning databases[DB/OL].http://www.cs.uci.edu/mlearn/MLRepository.html.
  • 8Agrawal R, lmielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database[C]//Proc. of the ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 1993: 207-216.
  • 9Tan Pangning,Steinbach M.数据挖掘导论[M].范明,范宏建,译.郑州:郑州人民邮电出版社,2006.
  • 10[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[A]. Proc of ACM SIGMOD Conf on Management of Data[C]. Washington,1993.207-216.

共引文献449

同被引文献83

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部