期刊文献+

利用视觉显著性的图像分割方法 被引量:29

Image segmentation based on visual saliency
原文传递
导出
摘要 提出一种利用视觉显著性对图像进行分割的方法。首先提取图像的底层视觉特征,从局部显著性、全局显著性和稀少性3个方面计算各特征图像中各像素的视觉显著性,得到各特征显著图;对各特征显著图进行综合,生成最终的综合显著图。然后对综合显著图进行阈值分割,得到二值图像,将二值图像与原始图像叠加,将前景和背景分离,得到图像分割结果。在多幅自然图像上进行实验验证,并给出相应的实验结果和分析。实验结果表明,该方法正确有效,具有和人类视觉特性相符合的分割效果。 An approach for image segmentation based on visual saliency is proposed in this paper. First low-level visual features of the image are extracted. Local saliency, global saliency and rarity saliency are computed for each feature map to get the feature conspicuity maps. Then these conspicuity maps are integrated to generate the saliency map. The saliency map is segmented using a threshold and a binary mask map is obtained, Finally the foreground and background of the original image are separated by adding the binary map to the original image. The proposed model has been tested on many natural images. Experimental results show that the proposed approach is valid and the segmentation results are consistent with human visual system.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第5期767-772,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60774041) 河南省科技攻关项目(102102210398) 中央高校基本科研业务费专项资金(HEUCF100604) 国家教育部博士点专项基金(20092304120013)
关键词 图像分割 视觉注意 显著图 阈值 image segmentation visual attention saliency map threshold
  • 相关文献

参考文献10

  • 1Itti L,Kouch c.Computational modeling of visual attention[J].Nature Reviews Neuroscience,2001,2(3):194-230.
  • 2Ma Yufei,Zhang Hongjiang.Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the 11th ACM International Conference on Multimedia.New York,NY:Association for Computing Machinery,2003:374-381.
  • 3Radhakrishna Achanta,Francisco Estrada,Patrlcia Wils,et al.Salient region detection and segmentation[C]//Proceedings of International Conference on Computer Vision Systems.Berlin Heidelberg:Springer-Verlag,2008:66-75.
  • 4张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 5Xiaodi Hou,Liqing Zhang.Saliency detection:a spectral residual approach[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition.Florida,USA:IEEE,2007:1-8.
  • 6罗彤,陈裕泉.视觉注意引导和区域竞争控制的医学图像分割[J].浙江大学学报(工学版),2007,41(11):1797-1800. 被引量:6
  • 7Fu Yu,Cheng Jian,Li Zhenglong,et al.Saliency cuts:an automatic approach to object segmentation[C]//Proceedings of the 19th International Conference on Pattern Recognition.Florida,USA:IEEE,2008:1-4.
  • 8Ni Xuelei,Huo Xiaoming.Statistical interpretation of the importance of phase information in signal and image reconstruction[J].Statistics & Probability Letters,2007,77(4):447-454.
  • 9Peter J Bex,Walter Makous.Spatial frequency,phase,and the contrast of natural images[J].Journal of Optical Society,2002,19(6):1096-1106.
  • 10Achanta R,Hemami S,Estrada F,et al.Frequency-tuned salient region detection[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Florida,USA:IEEE,2009:1597-1604.

二级参考文献22

  • 1[1]UDUPA J K,SAMARASEKERA S.Fuzzy connectedness and object definition:theory,algorithms,and applications in image segmentation[J].Graphical Models and Image Processing,1996,58(3):246-261.
  • 2[2]SAHA P K,UDAPA J K.Relative fuzzy connectedness and object definition:theory,algorithms,and applications in image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(11):1485-1500.
  • 3[3]ZHENG Yuan-jie,YANG Jie,ZHOU Yue.Unsupervised image segmentation based on fuzzy connectedness with sale space theory[J].International Journal of Signal Processing,2004,1(4):322-327.
  • 4[4]TANG M,MA S.General scheme of region competition based on scale space[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(12):1366-1378.
  • 5[5]MOHAN R,NEYATIA R.Perceptual organization for scene segmentation and description[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,14(6):616-635.
  • 6[6]ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 7[7]WALTHER D,ITTI L,RIESENHUBER M,et al.Attentional selection for object recognition-a gentle way[C]∥ Biologically Motivated Computer Vision,Proceedings,Lecture Notes in Computer Science.[S.l.]:Springer,2002,2525:472-479.
  • 8[8]COMANICIU D,MEER P.Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 9[9]HERBIN M,BONNET N,VAUTROT P.Estimation of the number of clusters and influence zones[J].Pattern Recognition Letters,2001,22(14):1557-1568.
  • 10Bourque E, Dudek G, Ciaravola P. Robotic sightseeing: A method for automatically creating virtual environments. In: Giralt G, ed.Proc. of the IEEE Conf. on Robotics and Automation. Leuven: IEEE Press, 1998. 3186~3191.

共引文献57

同被引文献263

引证文献29

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部