期刊文献+

非结构化道路区域检测的协同学习方法 被引量:6

Unstructured road detection using co-learning
原文传递
导出
摘要 非结构化道路区域检测是智能车环境感知的重要问题。提出基于多方向Gabor纹理直方图的SVM分类器,并将其与直方图反向投影器组合,建立了协同学习框架。在实际运行中,两个学习器可以相互为对方提供标注样本进行更新,既提高了在线学习能力,又回避了自学习过程经常导致的模型漂移问题。经实验测试,协同学习机制显著改善了道路检测性能。 Unstructured road region detection forms a main problem of environment sensing for intelligent vehicle. In this paper, two learers are proposed to solve this problem. One is a support vector machine (SVM) classifier which utilizes multi-orientation Gabor texture histogram, and the other is a color histogram back-projection model. Both learners are combined in a co-learning framework. In practical running, the two learners can provide "labeled" samples for each other. This approach can improve the online learning capability and avoid the model drifting problem which often occurs in self- learning approach. Experimental results show the advantages of the proposed co-learning approach.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第5期792-799,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(90820304 60909055 60625304 61075027) 国家高技术研究与发展计划项目(2007AA04Z232) 国家重点基础研究计划项目(G2007CB311003)
关键词 协同学习 道路检测 支持向量机 co-learning road detection support vector machine
  • 相关文献

参考文献18

  • 1袁夏,赵春霞,陈得宝,蔡云飞,韩光.一种基于激光雷达的路面提取算法[J].中国图象图形学报,2009,14(10):2035-2041. 被引量:9
  • 2Danescu R,Nedevschi S.Probabilistic lane tracking in difficult road scenarios using stereovision[J].IEEE Transactions on Intelligent Transportation Systems,2009,10(2):272-282.
  • 3Cheng H Y,Jeng B S,Tseng P T,et al.Lane detection with moving vehicles in the traffic scenes[J].IEEE Transactions on Intelligent Transportation Systems,2006,7(4):571-582.
  • 4Crisman J,Thorpe C.Unscarf-A color vision system for the detection of unstructured roads[C]//Proceedings of International Conference on Robotics and Automation.Piscataway,USA:IEEE Press,1991:2496-2501.
  • 5Alon Y,Ferencz A,Shashua A.Off-road path following using region classification and geometric projection constraints[C]// Proceedings of Computer Vision and Pattern Recognition.Piscataway,USA:IEEE Press,2006:689-696.
  • 6Ollis M,Huang W H.Happold M.A Bayesian approach to imitation learning for robot navigation[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE Press,2007:709-714.
  • 7Lookingbill A,Rogers J,Lieb D,et al.Reverse optical flow for self-supervised adaptive autonomous robot navigation[J].International Journal of Computer Vision,2007,74 (3):287-302.
  • 8Tue D S,Guo D,Yan C H,et al.Robust extraction of shady roads for vision-based UGV navigation[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA; IEEE Press,2008:3140-3145.
  • 9Dahlkamp H,Kaehler A,Stevens D,et al.Self-supervised monocular road detection in desert terrain[C]//Proceedings of the Robotics Science and Systems Conference.Philadelphia,USA:IEEE Press,2006:1-7.
  • 10Bates A R,Bijral A S,Mulligan J,et al.Travenable path identification in unstructured terrains:a Markov random walk approach[C]//Proceedings of IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE Press,2009:3423-3430.

二级参考文献9

  • 1Sparbert J, Dietmayer K, Streller D. Lane detection and street-type classification using laser range images [ A ]. In : Proceedings of IEEE Intelligent Transportation Systems Conference [ C ], Oakland, CA, USA, 2001:454-459.
  • 2Kirchner A, Heinrich T. Model-based detection of road boundaries with a laser scanner[ A ]. In : Proceedings of International Conference on Intelligent Vehicles[C], Stuttgart, Germany, 1998:93-98.
  • 3Cramer H, Waniellk G. Road border detection and tracking in noncooperative areas with a laser radar system [ A ] . In: Proceedings of German Radar Symposium [ C ], Bonn, Germany, 2002 : 24- 29.
  • 4Fardi B, Scheunert U, Cramer U. Multi-modal detection and parameter-based tracking of road borders with a laser scanner[ A]. In: Proceedings of IEEE International Conference on Intelligent Vehicles [ C ] , Columbus, Ohio, USA, 2003 : 95-99.
  • 5Wijesoma W S, Kodagoda K R S, Balasuriya Arjuna P. Road- boundary detection and tracking using lidar sensing [ J ]. IEEE Transactions on Robotics and Automation, 20(3 ) :456-464.
  • 6Liu Peter X, Meng Max Q H. Online data-driven fuzzy clustering with applications to real-time robotic tracking[ J]. IEEE Transactions on Fuzzy Systems,2004,12(4) :516-523.
  • 7Rose K, Gurewitz K, Fox G C. Statistical mechanics and phase transitions in clustering[ J]. Physical Review Letter, 1990, 65(8 ) : 945-948.
  • 8Rose K. Deterministic annealing for clustering, compression, classification, regressions and related optimization problems [ J ]. Proceedings of IEEE, 1998, 86 ( 11 ) : 2210-2239.
  • 9陈得宝,赵春霞,张浩峰,成伟明,唐磊.基于2维激光测距仪的快速路边检测[J].中国图象图形学报,2007,12(9):1604-1609. 被引量:9

共引文献8

同被引文献63

  • 1李青,郑南宁,马琳,程洪.基于主元神经网络的非结构化道路跟踪[J].机器人,2005,27(3):247-251. 被引量:18
  • 2郑为建,金伟其,苏君红.近红外固体成像夜视技术发展的潜力[J].红外技术,2005,27(4):269-273. 被引量:4
  • 3梁靓,黄玉清.融合Canny算子和形态学方法的路径识别[J].计算机工程,2006,32(21):200-202. 被引量:15
  • 4Huang jingang, Kong Bin. I,I Bichun. et al. A new method of unstructured road detection based oil HSV color space and mad features [C]. Proceedings of the 2007 International Confei~nce on Information Acquisition. 2007: 596-601.
  • 5Tian Zheng, Xu Cheng, Wang Xi',wdong, et al. Non- paramefic mode fo robust road recognition[C]. 2010 IEEE lOlh h.rlutliomd Conferenc ml Signal Prot.essing, 2010: 869-872.
  • 6张玉颖,顾小东,汪源源.基于梯形模型和支持向量机的非结构化道路检测[J].汁算机工程与应用,2010.46(15):138-141.
  • 7TAN C.HONG T,CHANG T,et al.Color model based real time learning for road following[c].Proceedings of the IEEE Intelligent Transportation Systems Conference,2006: 939-944.
  • 8OJAI.A T. PIET1K1NEN M, et al. A comparative study of xlu meastn'c's with classification based on feature dislribution[J ]. pattern recognition. 1996,29:51-59.
  • 9Miienpaa T. Pietik~inen M. Texture analysis with local binary paterns In Chen Ctt & Wang PSP (eds) Handbook of Pattern Recognition and Computer Vision 5nt ed[M]. World Scientific, 2005.
  • 10OJALA T. PIETIKINEN M. Muhiresolution gray-scale and rotatim invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Inlelligence. 2(X)2. 24(7): 971-987.

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部