期刊文献+

基于多种类视觉特征的混合高斯背景模型 被引量:13

Mixture of Gaussian background modeling method based on multi-category visual features
原文传递
导出
摘要 Stauffer等人提出的混合高斯背景减除建模技术及其改进算法在真实场景的运动目标检测系统中取得了较好的检测效果且被人们广泛应用。然而,此类方法通常采用单一的颜色视觉特征进行建模。当运动目标的表观颜色和背景场景的表观颜色相近时,检测准确度会大大降低。对于场景亮度条件的突变而引起的前景噪声,即使采用模型更新机制,也不能有效及时的去除。针对这些不足,提出一种基于颜色、边缘和纹理视觉特征的混合高斯建模技术。新的建模特征能够很好的描述背景区域的本质,对前景目标有着非常好的区分力,并且采用准确率和召回率对实验结果进行定量分析。实验分析表明,新算法有效地解决了传统算法存在的问题。同时也为后继的高层视觉分析任务打下了良好的基础。 The mixture of Gaussian method (GMM) proposed by Stauffer et al and its improved versions achieve better performance and have been widely used in smart vision systems. Traditionally, GMM only uses a single color visual feature to model scenes, but it will fail when moving objects have the same color appearance with scenes' color appearance. In addition, traditional GMM can't effectively solve problems caused by lighting changes and especially lighting sudden changes. To overcome these weaknesses, in this paper, a new modeling method based on multi-category visual features (i. e. color, texture and edge) is proposed. Experiment results show that our new method" solves the above problems effectively,which will be a baseline for high-level vision analysis.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第5期829-834,共6页 Journal of Image and Graphics
基金 国家高技术研究发展(863)计划项目(2008AA01Z121 2007AA01Z338) 国家自然科学基金项目(909Z4026)
关键词 多种类视觉特征 混合高斯 离散余弦变换 准确率 召回率 multi-category visual features DCT mixture of Gaussian model precision ratio recall ratio
  • 相关文献

参考文献16

  • 1Hampapur A,Brown L,Connell J,et al.Smart video surveillance[J].IEEE Signal Processing Magazine,2005,22(2):38-51.
  • 2Karaijo S,Matsushita Y.Traffic monitoring and accident detection at intersections[J].IEEE Transactions on Intelligent Transportation Systems,2000,1(2):108-118.
  • 3Zhan Fengyue,Chellappa R.Synthesis of silhouettes and visual hull reconstruction for articulated humans[J].IEEE Transactions on Multimedia,2008,10(8):1565-1577.
  • 4Yigit A,Temizel A.Abandoned object detection using thermal and visible band image fusion[C]//Proceedings of the IEEE 18th Conference on Signal Processing and Communications Applications.New York,America:IEEE,2010:617-620.
  • 5Friedman N,Russell S.Image segmentation in video sequences:probabilistic approach[C]//Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence.San Francisco,America:Morgan Kaufmann,1997:175-182.
  • 6Cutler R,Davis L.View-based detection and analysis of periodic motion[C]//Proceedings of International Conference on Pattern Recognition.New York,America:IEEE,1998:495-500.
  • 7Mason M,Duric Z.Using histograms to detect and track objects in color video[C]//Proceedings of the Applied Imagery Pattern Recognition Workshop,New York,America:IEEE,2001:154-159.
  • 8Philippe N,Benedict B,Olivier B.Local kernel color histograms for background subtraction[C]//Proceedings of International Conference on Computer Vision Theory and Applications.America:INSTICC,2006:213-219.
  • 9Wren C,Azarbayejani A,Darrell T,et al.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 10Haritaoglu I,Harwood D,Davis L S.W4:real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):8O9-83O.

同被引文献119

引证文献13

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部