期刊文献+

最小描述长度优化下的医学图像统计形状建模 被引量:3

Statistical shape modeling based on minimum description length optimization in medical images
原文传递
导出
摘要 统计形状模型(SSM)是有效的图像处理与分析方法。为了建立模型,需要从形状样本集中提取出具有对应关系的轮廓采样点集合,这是决定模型性能的关键。传统的手动标定这些点集来确保对应关系枯燥耗时且带有主观性,更难以向高维拓展。对形状建立逐层的多尺度参数表示,基于最小描述长度(MDL),在粗尺度上建立反映点对应程度的目标函数并最小化,提出首先确保粗尺度上具有最优意义的点对应,同时在精尺度上使用最便捷的弧长参数函数来确定特征点,完成感兴趣目标的快速统计形状建模,进而统计分析以验证模型性能,为后续图像分割或定量分析打下基础。实验对肌肉骨骼核磁共振成像(MRI)中椎骨、椎间盘以及半月板等具有临床意义的结构建立了统计形状模型,验证了本文方法与手动取点相比具有客观可重复性且更加简洁,与单一尺度下的MDL方法相比时间效率更高。基于此模型的图像分割与基于手动建模的分割相比,误差相当或有所降低。 Statistical shape model (SSM) is an efficient method of image processing and analysis. One key factor in building models is to obtain correspondent landmarks among the whole shape dataset. Traditional manual land-marking is temporally expensive, subjective, boring and prohibitively extensive in dimension. In this paper, a multi-scale parameterization on shapes allows a minimum description length (MDL) based optimization on landmark correspondence in a coarse scale and a most convenient arc parameterization based landmark correspondence in a fine scale. This achieves a fast and accurate SSM building, which is the foundation on following image segmentation and quantitative analysis. In experiments, SSMs are built with vertebral body, intervertebral disc and meniscus shapes extracted from various MRIs respectively. It is testified that the models built with the proposed scheme is not only more repeatable and concise than model baseds on manual landmarking, but also more temporally efficient than model purely based on optimization. The segmentation errors from the proposed method are comparable with or better than those from the manual modeling based segmentation.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第5期879-885,共7页 Journal of Image and Graphics
基金 教育部博士点基金项目(20060359004) 教育部留学归国人员科研启动基金项目(413117)
关键词 统计形状模型 最小描述长度 点对应问题 自动标定特征点 statistical shape models minimum description length point correspondence problem automatic landmarking
  • 相关文献

参考文献11

  • 1Zhao Zheen,Teoh E K.A new scheme for automated 3D PDM construction using deformable models[J].Image and Vision Computing,2008,26(2):27S-288.
  • 2Liu Jiamin,Udupa Jayaram.Oriented active shape models[J].IEEE Transactions on Medical Imaging,2009,28(4):571-584.
  • 3Lee S J,Sung J W,Kim D J.Tensor-based AAM with continuous variation estimation,application to variation-robust face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(6):1102-1116.
  • 4王丽婷,丁晓青,方驰.一种鲁棒的全自动人脸特征点定位方法[J].自动化学报,2009,35(1):9-16. 被引量:20
  • 5王绍宇,戚飞虎,夏小玲.基于MDL Shape Model及EFD的行人轮廓2D+time表示[J].中国图象图形学报,2008,13(10):1898-1901. 被引量:2
  • 6Rueda Sylvia,Udupa Jayaram,Li Bai.Local curvature scale:a new concept of shape description[C]// Proceedings of the SPIE Medical Imaging 2008:Image Processing.Washintong:SPIE,2008:69144Q-1-69144Q-11.
  • 7Xie Jun,Heng Phengan,Mubarak Shah.Shape matching and modeling using skeletal context[J].Pattern Recognition,2008,41(5):1756-1767.
  • 8陈武凡,秦安,江少峰,冯前进,郝立巍.医学图像分析的现状与展望[J].中国生物医学工程学报,2008,27(2):175-181. 被引量:28
  • 9Kotcheff M,Taylor C J.Automatic construction of eigenshape models by direct optimization[J].Medical Image Analysis,1998,2(4):303-314.
  • 10Davies R H,Twining C J,Cootes T F,et al.A minimum description length approach to statistical shape modeling[J].IEEE Transactions on Medical Imaging,2002,21 (5):525-537.

二级参考文献49

  • 1闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 2王彩芳,姜明.医学图像配准综述[J].CT理论与应用研究(中英文),2006,15(2):74-80. 被引量:4
  • 3Zhang L, Ai H Z. Multi-view active shape model with robust parameter estimation. In: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 469-472
  • 4Matthews I, Baker S. Active appearance models revisited. International Journal of Computer Vision, 2004, 60(2): 135-164
  • 5Yan S C, Liu C, Li S Z, Zhang H J, Shum H Y, Cheng Q S. Face alignment using texture-constrained active shape models. Image and Vision Computing, 2003, 21(1): 69-75
  • 6Ma Y, Ding X Q, Wang Z E, Wang N. Robust precise eye location under probabilistic framework. In: Proceedings of the 6th International Conference on Automatic Face and Gesture Recognition. Seoul, Korea: IEEE, 2004. 339-344
  • 7Breiman L. Random Forests and Random Features, Technical Report, University of California, Berkeley, 1999
  • 8Jiao F, Li S Z, Shum H Y, Schuurmans D. Face alignment using statistical models and wavelet features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE, 2003. 321-327
  • 9Liu X M. Generic face alignment using boosted appearance model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
  • 10Huang Y C, Liu Q S, Metaxas D. A component based deformable model for generalized face alignment. In: Proceedings of IEEE Conference on Computer Vision. Washington D. C., USA: IEEE, 2007. 1-8

共引文献46

同被引文献41

  • 1杨文华,高梅国.基于平面变换技术的脉冲信号分选[J].北京理工大学学报,2005,25(2):151-154. 被引量:10
  • 2王建梅,覃文忠.基于L-M算法的BP神经网络分类器[J].武汉大学学报(信息科学版),2005,30(10):928-931. 被引量:52
  • 3李合生,韩宇,蔡英武,陶荣辉.雷达信号分选关键技术研究综述[J].系统工程与电子技术,2005,27(12):2035-2040. 被引量:72
  • 4徐向华,朱杰,郭强.语音识别中基于最小描述长度准则的决策树动态剪枝算法[J].声学学报,2006,31(4):370-376. 被引量:7
  • 5王文,芮国胜,王晓东,邢福成.图像多尺度统计模型综述[J].中国图象图形学报,2007,12(6):961-969. 被引量:4
  • 6Zhu S C,Yuille A L FORMS:a flexible object recognition and modeling system[J] .International Journal on Computer Vision,1996,20(3):187-212.[DOI:10.1007/BF00208719].
  • 7Siddiqi K,Shkoufandeh A,Dickinson S,et al.Shock graphs and shape matching[J] .International Journal on Computer Vision,1999,35(1):13-32.[DOI:10.1023/A:1008102926703].
  • 8Bai X,Latecki L J.Path similarity skeleton graph matching[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(7):1282-1292.[DOI:10.1109/TPAMI.2007.70769].
  • 9Bai X,Latecki L J,Liu W Y.Skeleton pruning by contour partitioning with discrete curve evolution[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (3):449-462.[DOI:10.1109/TPAMI.2007.59].
  • 10Bartolini I,Ciaccia P,Patella M.Accurate retrieval of shapes using phase of Fourier descriptors and time warping distance[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):142-147.[DOI:10.1109/TPAMI.2005.21].

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部