期刊文献+

对当代信用风险度量技术序列模型的对比与评价 被引量:1

A Comparison and Assessment on Modern Models of Credit Risk Measurement
下载PDF
导出
摘要 信用风险是银行等金融机构所面临的主要风险,信用风险管理则作为金融界及其监管机构的重点工作,且在长期管理实践中形成了一系列专门的度量技术模型。其中,在国际上比较著名,在信用风险管理实践中广泛应用的包括KMV、Credit Metrics、Credit Portfolio View和Credit Risk+等四个模型。由于从理论基础、构建思想、模型假设和计量框架等方面均有相似和不同之处,因此在实际运用中,不仅要体现风险管理的针对性,而且要满足风险度量的可行性,也是风险量化的技术标准与制度标准相结合原则的要求。 Credit risk is the main risk that financial institutes such as banks face. As the main task of national financial sectors and the regulatory agencies, credit risk management has been formed a se-ries of special models of measurement in a long term practice. For example, KMV, Credit Metrics, Credit Portfolio View and Credit Risk+ are taken as representatives, which are internationally well known and commonly applied in the credit and risk management. Because of the similarities and diffe ences in the aspects of theoretical basis, concepts construction, model assumption and measuring ar chitecture, these models need to not only reflect the target of risk management, but also satisfy the feasibility of risk measurement, which is the requirement of the principle combining technical stand ards and system standards of risk quantification.
作者 贾楠亭
机构地区 陕西教育学院
出处 《宝鸡文理学院学报(社会科学版)》 2011年第2期92-98,共7页 Journal of Baoji University of Arts and Sciences:Social Science Edition
关键词 信用风险 信用风险度量模型 对比与评价 credit risk models of credit risk measurement comparison and assessment
  • 相关文献

参考文献9

二级参考文献45

  • 1姜春兰.浅析现代企业的信用风险管理[J].财会月刊(合订本),2004(07B):72-73. 被引量:4
  • 2杜智勇.企业信用风险的形成机理与防范策略[J].企业经济,2004,23(10):43-44. 被引量:2
  • 3李英.浅谈企业信用风险管理[J].首都经济贸易大学学报,2004,6(6):66-68. 被引量:1
  • 4Goonatilake S, Treleavan P. Intelligent systems for finance and business[M]. New York: Wiley,1995.
  • 5Salchenberger L M, Cinar E M, Lash N A. Neural networks: a new tool for predicting thrift Failures[J]. Decision Sciences,1992,23:899-916.
  • 6Tam K Y, Kiang M. Managerial applications of neural networks: the case of bank Failure Predictions[J]. Management Science,1992,38:926-947.
  • 7Jacobs R A, Jordan M I, Nowlan S J, et al. Adaptive mixtures of local experts[J]. Neural Computation,1991,3:79-87.
  • 8Kohonen T. Self-organizing maps[M]. Berlin, Germany: Springer,1997.
  • 9Moody J, Darken C J. Fast learning in networks of locally tuned processing units[J]. Neural Computation,1989,3:213-25.
  • 10Carpenter G A, Grossberg S, Rosen D B. Fuzzy ART: fast stable learning and categorization of analog Patterns by an adaptive resonance system[J]. Neural Networks,1991,4:759-71.

共引文献29

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部