期刊文献+

关于欧拉求和函数的微分及应用

Differential of Euler Summation Function and Its Application
下载PDF
导出
摘要 针对文献[1]中的一些重要结论,在Hurwitz zeta函数部分和的积分渐进公式研究的基础上,研究了欧拉求和函数的推广的微分问题。采用解析数论中函数和级数的积分方法,对于Hurwitz zeta函数部分和进行微分,得出了欧拉求和函数推广公式的一阶和二阶微分公式,即定理1和定理2,将其结论进行应用,推出了关于级数和积分的五个恒等式,即推论1、推论2和推论3。 Aiming at some important conclusions in reference[1],differential of Euler summation function promotion was studied based on Hurwitz Zeta function partial sum and integral asymptotic formula.By using integral method of function and series in analytic number theory,partial sum of Hurwitz zeta function was differentiated,and the first and second order differential formula of Euler summation function promotion formula,namely Theorem 1 and Theorem 2 were obtained.The conclusions were applied to educe five identities of series and integral,that is Corollary 1,Corollary 2 and Corollary 3.
作者 李有成
出处 《安徽理工大学学报(自然科学版)》 CAS 2011年第1期13-16,24,共5页 Journal of Anhui University of Science and Technology:Natural Science
基金 陕西省自然科学基金资助项目(2010JM1009)
关键词 欧拉求和 级数 微分 ZETA-函数 Euler summation series differential Zeta-function
  • 相关文献

参考文献8

  • 1H M SRIVASTAVA,JUNESANG CHOL Series Associated with the Zeta and Related Functions[M].Kluwer Academic Publishers,Dordrecht,Boston,and London,2001.
  • 2S KANEMITSU,H KUMAGAI,M YOSHIMOTO.Sums involving the Hurwitz zeta function[J].Ramanujan,2001(5):5-19.
  • 3H-L LI.On generalized Euler constants and an integral related to the Piltz divisor problem[J].Siaulai Math.Phys.SOm.,2005(8):81-93.
  • 4H-L LI,M HASHISMOTO,S KANEMITSU.Some examples of the Hurwitz transform[J].J.Math.Soc.Japan,2009,61:651-660.
  • 5H-L LI,S KANEMITSU,H TSUKADA.Modular relation interpretation of the series involving the Riemann zeta values[J].Proc.Japan Acad.Ser.A.Math.Sci.,2008,84:154-158.
  • 6K CHAKRABORTY,S KANEMITSU,H-L LI.On the values of a class of Dirichlet series at rational arguments[J[.Proc.Amer.Math.Soc.,2010,128(4):1 223-1 330.
  • 7H-L LI,J MA,W-P ZHANG.On some Diophantine Fourier[J].Acta Math.Sinica English Series,2010,25(6):1 125-1 132.
  • 8S KANEMITSU,Y TANIGAWA,M YOSHIMOTO.On Dirichlet Lfunction values at rational arguments[J].Lecture Notes Series of the Bamanujan Math.Soc.,2004(1):31-37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部