期刊文献+

非线性应力管电缆终端的电—热场分析 被引量:2

Electric-thermal Field Analysis for Cable Terminals Equipped with Nonlinear Stress Control Tubes
下载PDF
导出
摘要 笔者基于变分原理,推导了非线性的时域有限元电场计算方程和稳态热场有限元方程,分别利用商用软件Integrated Engineering Software和有温度分布解析解的轴对称电缆结构验证了编制程序的正确性,并利用该方法分析了含线性、非线性以及复合结构的应力管时的电缆终端电场和热场分布。分析结果表明,线性、非线性以及复合结构的应力管,通过适当的选择其结构和材料的参数都能很好的均匀终端的场强分布,但含非线性应力管的电缆终端的损耗和温升远小于含线性以及复合结构应力管的电缆终端,这为冷缩式电缆终端设计提供了一个指导方向。 In order to fully understand the consequences of the interaction of electric and thermal fields,a time-domain finite element(FE) equation and an FE equation were derived for describing such electric and thermal fields based on the variational principle.Two comprehensive finite element calculation codes were compiled for electric field and thermal field,respectively.The validity of the FE code for time-domain electric field was verified by comparing the simulation results with the predictions of a commercial package,named integrated engineering software(IES).The thermal FE code was validated by analytical solution of temperature distribution in a coaxial cable.A comparison of the electric field and thermal field distributions in cable terminals equipped with linear,nonlinear,or composite structural stress control tubes(SCT) was presented.The results reveal that a uniform electric field distribution is achievable by selecting appropriate structure and material for cable terminals,and significant reduction in terminal loss and temperature elevation is found in cable terminals by employing nonlinear SCT.And it is of great practical significance for cold-shrinkable terminal design.
出处 《高压电器》 CAS CSCD 北大核心 2011年第5期49-53,58,共6页 High Voltage Apparatus
关键词 电缆终端 非线性 时域有限元方法 应力管 cable terminal nonlinear time-domain finite element method stress control tube
  • 相关文献

参考文献15

  • 1李新平,刘守功,曹晓珑,任常娥.高压电缆终端结构设计的进展[J].电线电缆,2002(3):11-14. 被引量:41
  • 2邱捷,王曙鸿,宫瑞磊,刘庆伟.电力电缆电容锥式终端电场的有限元分析[J].电线电缆,2004(6):33-35. 被引量:9
  • 3卓金玉.电力电缆终端结构中的应力锥电场数值分析和模拟实验研究[J].电工技术学报,2000,15(2):15-19. 被引量:40
  • 4MACKEVICH P, HOFFMAN W. Insulation enhancement with heat-shrinkable components part III: shielded power cable[J]. IEEE Electrical Insulation Magazine, 1991, 7(4):31-40.
  • 5国家电力公司电力机械局.国家电力公司电网建设分公司.中国华电装备工程总公司.电线、电缆及其附件实用手册[M].北京:中国电力出版社,2000.
  • 6EGIZIANO L, TUCCI V. A Galerkin model to study the field distribution in electrical components employing nonlinear stress grading materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6 (6):765-773.
  • 7LIU Ying, YANG Juan-juan, CAO Xiao-long. Application of nonlinear resistance and capacitance configuration in ameliorating the electrical field distribution[C]// Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials. Nagoya : [ s.n. ], 2003:745-748.
  • 8LUPO G, TUCCI V, FEMIA N, et al. Electric field calculation in HV cable terminations employing heat-shrinkable composites with non linear characteristics[C] // Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials. Brisbane Australia : [s.n.], 1994:278-281.
  • 9RIVE NCE J P, LEBEY T. An overview of electrical properties for stress grading optimization[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(3):309-318.
  • 10CAR STEA D, CARSTEA I. Numerical simulation of el-ectrie field distribution in cable terminations[C]// 6th International Conference on Telecommunications in Modem Satellite, Cable and Broadcasting Service. TELSIKS: [s.n.], 2003: 479-482.

二级参考文献18

  • 1崔翔.应用有限元方法计算含有电位悬浮导体的电场分布[J].华北电力学院学报,1995,22(2):1-7. 被引量:39
  • 2梅炽,王前普,彭小奇,周孑民.有色冶金炉窑的仿真与优化[J].中国有色金属学报,1996,6(4):19-23. 被引量:29
  • 3刘其昶.电气绝缘结构设计原理(中)[M].西安:西安交通大学出版社,1987..
  • 4梅炽 汤洪清 孟柏庭.铝电解槽电、热解析数学模型及数学仿真试验[J].中南工业大学学报,1986,6(12):29-37.
  • 5李景江 邱竹贤.工业铝电解槽内衬材料的导热系数[J].轻金属,1987,(11):20-25.
  • 6Marc Dupuis. Computation of aluminum reduction cell energy balance using ANSYS finite element models [ J ].Light Metals, 1998, 409-417.
  • 7Kaseb S, Ahmed H A, et al. Thermal behavior of prebaked aluminum reduction cells:Modeling and experimental analysis [J]. Light Metals, 1997, 395-401.
  • 8Zoric J, Rousar I, Thonstad J. Mathematical modelling of current distribution and anode shape in industrial aluminum cells with prebaked anodes [J] . Light Metals, 1997, 449-456.
  • 9Dupuis M, Tabsh I. Thermo-electric coupled field analysis of aluminum reduction cells using the ANSYS parametric design language [ A ]. Proceeding of the ANSYS Fifth International Conference, 1991(3) : 1780 - 1792.
  • 10盛剑霓,电磁场数值分析,1984年

共引文献96

同被引文献28

  • 1郭俊,吴广宁,张血琴,舒雯.局部放电检测技术的现状和发展[J].电工技术学报,2005,20(2):29-35. 被引量:250
  • 2彭潜,陈俊武,梁望霖,吴云飞,袁皓.XLPE电缆工频耐压试验探讨[J].高电压技术,2005,31(5):55-55. 被引量:14
  • 3宫瑞磊,邱捷,王曙鸿.含非线性应力管的电缆终端的电-热场分析[J].绝缘材料,2006,39(1):23-27. 被引量:4
  • 4韩轩,马永其.高压交联电缆终端预制橡胶应力锥的研究进展[J].绝缘材料,2007,40(4):12-17. 被引量:23
  • 5AGARWAL V K,BANFORD H M,BERNSTEIN B S,et al. The mysteries of muhifactor ageing[J]. IEEE Electrical Insulution Magine, 1995,11(3):37-43.
  • 6MAZZANTI G. The combination of electro-thermal stress, load cycling and thermal transients and its effects on the Life of high voltage AC cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation ,2009,16(4): 1168-1179.
  • 7SIMONI L. A general approach to the endurance of electrical insulation under voltage and temperature[J]. IEEE Transactions on ELectrical Insulation, 1981,16(4) : 277-289.
  • 8FARUK A,NURSEL C,VILAYED A,et al. Aging of 154 kV underground power cable insulation under combined themml and electrical stresses[J]. IEEE Electrical Insulation Magazine, 2007,23(5) :25-33.
  • 9QI X,BOGGS S. Thermal and mechanical properties of EPR and XLPE cable compounds[J]. IEEE Electrical Insulation Magazine, 2006,26(3) : 19-24.
  • 10RAWANGPAI A,MARAUNGSRI B,CHOMNAWANG N. Artificial accelerated ageing test of 22 kV XLPE cable for distribution system applications in Thailand[J]. World Academy of Science,Engineering and Technology,2010 (65) : 220-225.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部