期刊文献+

粒子群优化神经网络在动态手势识别中的应用 被引量:7

Application of the BP Neural Network Based on PSO in Dynamic Gesture Recognition
下载PDF
导出
摘要 为了提高动态手势学习训练速度和识别准确率,本文提出一种基于粒子群优化BP神经网络的动态手势识别方法。首先基于自然人机交互需要,定义一套基于机器视觉的动态手势模型;在获取指尖运动轨迹的基础上,提取动态手势的特征向量作为神经网络的输入;利用改进的PSO算法训练BP神经网络,得到神经网络的权值和阈值;最后利用训练过的神经网络识别基于机器视觉的动态手势。测试结果表明:改进的PSO算法能够提高神经网络训练速度和精度,进而提高动态手势识别准确率。 In order to improve the training speed and identification accuracy of dynamic gesture,a method of gesture recognition based on the particle swarm optimization(PSO) BP neural network is put forward.First,a set of dynamic gestures is defined for Human-Machine Interaction(HMI).The engenvectors vectors of dynamic gestures are extracted as the input of the BP neural network on the basis of obtaining the trajectories of moving fingertips.An improved PSO algorithm is used to train the BP neural network and get the weights/thresholds of the network.Finally,the gestures based on machine vision are recognized through the trained BP neural network.The experimental results show that the proposed PSO algorithm can enhance the speed and precision of network training,and improve the accuracy of dynamic gesture recognition.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第5期74-79,共6页 Computer Engineering & Science
基金 广东省自然科学基金资助项目(8152840301000009) 广东省科技计划资助项目(2009B030803031)
关键词 机器视觉 BP神经网络 动态手势识别 粒子群 machine vision BP neural network dynamic gesture recognition particle swarm optimization
  • 相关文献

参考文献9

  • 1董士海.人机交互的进展及面临的挑战[J].计算机辅助设计与图形学学报,2004,16(1):1-13. 被引量:183
  • 2Patwardhan K S,BoySD. Hand Gesture Modelling and Rec- ognition Involving Changing Shapes and Trajectories, Using a Predictive EigenTracker[J]. Pattern Recognition Letters 2007, 28(3):329-334.
  • 3Alexander T C, Ahmed H S, Anagnostopoulos G C. An Open Source Framework for Real-Time, Incremental, Static and Dynamic Hand Gesture Learning and Recognition[C]// Proc of HCII'09, Part 11,2009:123 -130.
  • 4Moya J M, de Espinosa A M, Araujo A, et al. Low- Cost Gesture Based Interaction for Intelligent Environments[C]// Proc of IWANN'09, Part II, 2009:752 -755.
  • 5Francke H, Ruiz-del-Solar J, Verschae R. Real-Time Hand Gesture Detection and Recognition Using Boosted Classifiers and Active Larning[C]//Proc of PSIVT'07, 2007:533 -547.
  • 6Park J ,Yi J. Efficient Fingertip Tracking and Mouse Pointer Control for a Human Mouse[C]//Proc of ICVS'03, 2003: 88-97.
  • 7Dehuri S,Cho S B. A Comprehensive Survey on Functional Link Neural Networks and an Adaptive PSO- BP Learning for CFLNN[J]. Neural Compute & Application, 2010(19):187- 205.
  • 8Li Yangmin,Chen Xin. A New Stochastic PSO Technique for Neural Network Training[M]//LNCS 3971, 2006:564- 569.
  • 9郭志涛,袁金丽,张秀军,范书瑞.基于改进的PSO神经网络的手写体汉字识别[J].河北工业大学学报,2007,36(4):65-69. 被引量:2

二级参考文献73

  • 1王玉.SUI:新一代用户界面技术[J].微电脑世界,2001(5):19-20. 被引量:3
  • 2陈敏 罗军.ATOM-面向任务的多通道界面结构模型[J].计算机辅助设计与图形学学报,1996,8:61-67.
  • 3董士海 王坚 戴国忠.人机交互和多通道用户界面[M].科学出版社,1999..
  • 4Oviatt S, et al. Designing the user interface for multimodal speech and gesture applications: State-of-the-art systems and research directions [J]. Human Computer Interaction, 2000,15(4): 263~322
  • 5World Wide Web Consortium. Multimodal interaction activity[OL]. http://www. w3. org/2002/mmi/, 2003
  • 6Card S, Moran T, Newell A. The keystroke-level model for user performance time with interactive systems [J].Communications of the ACM, 1980, 23(7): 396~410
  • 7Card S, Moran T, Newell A. The Psychology of Human Computer Interaction [M]. New Jersey: Lawrence Erlbaum Associates, 1983
  • 8Newell A, Simon H. Human Problem Solving [M]. Englewood Cliffs, NJ: Prentice-Hall, 1972
  • 9John B, et al. The GOMS family of user interface analysis techniques: Comparison and contrast [J]. ACM Transaction on Computer-Human Interaction, 1996, 3(4): 320~351
  • 10Vredenburg K, Isensee S, Righi C. User-Centered Design: An Integrated Approach [M]. New Jersey: Prentice Hall, 2001

共引文献183

同被引文献81

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部