期刊文献+

基于用户协作的新闻共享模型

A News Sharing Model Based on User Collaboration
下载PDF
导出
摘要 如何从互联网已有海量信息中为用户推荐符合其兴趣的新闻是一项极具挑战的工作。门户网站式的传统新闻传播方法没有考虑用户的个性化需求,因而无法给出合适的推荐。本文提出了一种基于用户协作的新闻共享模型,通过浏览器插件收集用户的浏览行为、分析用户对网页的隐性评价,并结合协同过滤算法实现相似用户间的新闻推荐。在原型系统中验证了本文所提方法的有效性,并分析了推荐算法的性能。 It is a real challenge to recommend news for users according to their interests from the existing mass information on the Internet.The traditional news propagation way,such as news on the portal sites,does not take the users' personal needs into consideration,which results in the low accuracy of the recommended news for users.In this article we propose a news sharing model based on the collaboration of users.More exactly,in this model,implicit ratings that the users give to the page are modeled from the users' behavior data,which are collected from the web browser plug-in,and then the news recommendations are shared among similar users based on these ratings through the algorithm of collaborative filtering.The method's availability is confirmed through a prototypic implementation of the model and the performance of the recommendation algorithm is also analyzed.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第5期165-170,共6页 Computer Engineering & Science
基金 国家973计划资助项目(2005CB321800 2005CB321801) 国家自然科学基金杰出青年基金(60625203)
关键词 浏览行为 用户兴趣 新闻推荐 协同过滤 browsing behavior user interests news recommendation collaborative filtering
  • 相关文献

参考文献11

  • 1中国互联网络信息中心.第17次中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.cn/images/2006/download/2006011701.pdf
  • 2Das A, Datar M, Garg A. Google News Personalization: Scalable Online Collaborative Filtering[C]//Proc of WWW 2007, 2007:271-280.
  • 3http://www. stumbleupon. com,2009.
  • 4Morita M, Shinoda Y. Information Filtering Based on User Behavior Analysis and Best Match Text Retrieval[C]//Proc of the 17th Annual Int'l ACM SIOIR Conf on Research and Development in Information Retrieval, 1994 : 272 -281.
  • 5Breese J, Hecherman D, Kadie C. Empirical Analysis of Pre- dictive Algorithms for Collaborative Filtering[C]//Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI' 98),1998:43- 52.
  • 6Adomavicius G, Tuzhilin A. Toward the Nexl Generation of Recommender Systems: A Survey of the State of the Art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6) :734- 749.
  • 7许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 8Oard D W, Kim J. Implicit Feedback for Recommender Sys- tems[C]//Proc of the AAAI Workshop on Recommender Systems, 1998:81-83.
  • 9Nichols D M. Implicit Rating and Filtering[C]//Proc of the 5th DELOS Workshop on Filtering and Collaborative Filte- ring, 1997:31-36.
  • 10Segaran T. Programming Collective Intelligence[M]. O' Reilly Media, Inc,2007.

二级参考文献72

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献545

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部