期刊文献+

基于DHMM的航空发动机故障诊断方法研究 被引量:1

Research on Fault Recognition of Aero-engine base on Discrete Hidden Markov Model
下载PDF
导出
摘要 在航空发动机的各式故障中,由振动引发的故障占有很大的比重。航空发动机的振动信号中蕴藏了大量的状态及故障信息,因此有必要寻找一种有效的特征提取和故障诊断方法。基于ICA和DHMM的理论方法,形成了ICA-DHMM故障诊断方法。其中ICA用于源信号分离以及特征提取;DHMM作为模式识别工具。通过与ICA-SVM故障诊断方法和传统的DHMM故障诊断方法进行比较,表明本方法有更好的识别效果。 Faults caused by engine vibration account for a large proportion in various faults of aero-engine.The mixed vibration signals of aero-engine contain abundant running information,it is necessary to seek for an efficient way for feature extraction and fault diagnosis.In this paper, a fault diagnosis approach ICA-DHMM is proposed.Independent component analysis(ICA) is used first for extracting feature and then discrete hidden Markov model(DHMM) is used as pattern recognition.Comparing with other fault diagnosis methods,experimental results show that the proposed method has higher recognized accuracy.
出处 《微处理机》 2011年第1期75-79,共5页 Microprocessors
关键词 航空发动机 故障诊断 特征提取 模式识别 Aero-engine Fault diagnosis Feature extraction Pattern recognition
  • 相关文献

参考文献8

  • 1Zhinong Li, Yongyong He, Fulei Chu, Jie Han, Wei Ham. Fault recognition method for speed - up and speed - down process of rotating machinery based an independent component analysis and Factorial Hidden Markov Model[ J ]. Journal of Sound and Vibration ,2006,291:60 - 71.
  • 2Ypma A, Pajunen P. Rotating machine vibration analysis with second - order independent component analysis [ J]. Proceeding of the Workshop on ICA and Signal Separation. France, Aussosis, 1999,37.
  • 3Ypma A, Leshem A, Duin R P W. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures [J]. Neurocompu ring, 2002,49 ( 1/4 ) : 349.
  • 4Rabiner L R. A tutorial on Hidden Markov Models and selected application in speech recognition [J]. Proc. IEEE, 1989,77 (2) :257 - 286.
  • 5何强,毛士艺,张有为.多观察序列连续隐含马尔柯夫模型的无溢出参数重估[J].电子学报,2000,28(10):98-101. 被引量:12
  • 6Yalan Ye ,Zhi - Lin Zhang,Jiazhi Zeng, Lei Peng. A fast and adaptive ICA algorithm with its applieatlon to fetal electrocardiogram extraction [J]. Applied Mathematics and Computation ,2008,205:799 - 806.
  • 7屈微,刘贺平,张德政.基于独立分量分析特征提取的故障诊断系统[J].北京科技大学学报,2006,28(7):700-703. 被引量:4
  • 8Sohre J S. Trouble - shooting to stop vibration of centrif- ugal[ J ]. Petro/Chem engineering, 1968 ( 11 ) :22 - 33.

二级参考文献14

  • 1何强,博士学位论文,2000年
  • 2杨行峻,语音信号数字处理,1995年
  • 3Ypma A,Pajunen P.Rotating machine vibration analysis with second-order independent component analysis ∥ Proceeding of the Workshop on ICA and Signal Separation.France:Aussois,1999:37
  • 4Ypma A,Tax D M J,Duin R P W.Robust machine fault detection with independent component analysis and support vector data description ∥Proceeding of IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing.Wisconsin:Madison,1999:67
  • 5Ypma A,Leshem A.Blind separation of machine vibration with bilinear forms ∥ Proceeding of the 2nd International Workshop on ICA and Signal Separation.Finland:Helsinki University of Technology,2000:405
  • 6Ypma A,Leshem A,Duin R P W.Blind separation of rotating machine sources:bilinear forms and convolutive mixtures.Neurocomputing,2002,49(1/4):349
  • 7Gelle G,Colas M,Serviere C.Blind source separation:a tool for rotating machine monitoring by vibration analysis.J Sound Vib,2001,248(5):865
  • 8Ekenel H,Sankur B.Feature selection in the independent component subspace for face recognition.Pattern Recognit Lett,2004,(25):1377
  • 9Jang G J,Lee T W,Oh Y H.Learning statistically efficient features for speaker recognition ∥ Proceeding of ICASSP.Salt Lake City:Utah,2001:1581
  • 10Cao X R,Liu R W.General approach to blind source separation.IEEE Trans Signal Process,1996,78(4):753

共引文献14

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部