摘要
通过构造新的Lyapunov-Krasovskii泛函并利用随机分析的方法,建立了一类具有混合时滞和马尔可夫(Markovian)参数切换的随机神经网络均方渐近稳定的判据.所考虑的混合时滞既包含时变的离散时滞也包含无穷分布时滞,神经网络的参数切换由某个马尔可夫链所确定.
By employing new Lyapunov-Krasovskii functionals and conducting stochastic analysis,it is to establish easily verifiable conditions under which the stochastic neural network with mixed time delays and Markovian switching is asymptotically stable in the mean square in the presence of parameters uncertainties.The mixed time delays under consideration comprise both the discrete time-varying delays and the infinitely distributed time-delays,and the Markovian switching is according to a Markovian chain.
出处
《苏州大学学报(自然科学版)》
CAS
2011年第2期16-22,共7页
Journal of Soochow University(Natural Science Edition)
关键词
随机神经网络
混合时滞
无穷分布时滞
马尔可夫参数切换
渐近稳定性
stochastic neural networks
mixed time delays
infinitely distributed time delays
Markovian switching
asymtotic stability