期刊文献+

动态数据库中的频繁子树挖掘算法

Mining Frequent Subtrees from Dynamic Database
下载PDF
导出
摘要 针对动态数据库随时间发生改变的特性,提出了一种新的在动态数据库中挖掘频繁子树的算法,引入树的转变概率、子树期望支持度和子树动态支持度等概念,提出了动态数据库中的支持度计算方法和子树搜索空间,从而解决了数据动态变化的频繁子树挖掘问题。随着子树搜索的进行,算法定义裁剪公式和混合数据结构,能有效地减少子树搜索空间和提高频繁子树的同构速度。实验结果表明,新算法有效可行,且具有较好的运行效率。 On account of dynamic database's characteristic which is changing over time,a new algorithm aiming to mine frequent subtree from dynamic database was proposed.It put forward the support algorithm and subtree-searching space involving some concepts such as tree change probability,subtree expectation support and subtree dynamic support.The problem of mining frequent subtree from dynamic database was investigated.With the process of the subtree-searching,algorithm definition pruning expressions and mix data structure could reduce subtree-searching space and improve frequent subtree isomorphism speed efficiently.The experimental result showed that the new algorithm is effective and workable and has a better operating efficiency.
出处 《计算机科学》 CSCD 北大核心 2011年第5期138-141,共4页 Computer Science
基金 国家自然科学基金项目(70573082) 教育部重点研究基地重大项目(08JJD870225)资助
关键词 数据挖掘 有序树 频繁子树 支持度 动态数据库 Data mining Ordered tree Frequent subtree Support Dynamic database
  • 相关文献

参考文献11

  • 1Zaki M J. Efficiently mining frequent trees in a forest: Algorithms and applications[J]. IEEE Transaction on Knowledge and Data Engineering: Special Issue on Mining Biological Data, 2005,17(8) : 1021-1035.
  • 2Chi Y, Yang Y, Muntz R R. HybridTreeMiner: An efficient al gorithm for mining frequent rooted trees and free trees using canonical forms[C]//Proceedings of 16th International Conference on Scientific and Statistical Database Management. Washington, DC: IEEE Computer Society, 2004 : 11.
  • 3朱永泰,王晨,洪铭胜,汪卫,施伯乐.ESPM——频繁子树挖掘算法[J].计算机研究与发展,2004,41(10):1720-1727. 被引量:18
  • 4赵传申,孙志挥,张净.基于投影分支的快速频繁子树挖掘算法[J].计算机研究与发展,2006,43(3):456-462. 被引量:14
  • 5Li Yun, Guo Xin, Yuan Yun-hao. A efficient algorithm to mine unordered trees[C]//ICIS 2009: Proceedings of 8th IEEE/ACIS International Conference on Computer and Information Science. Shanghai, 2009 : 331-336.
  • 6杨沛,谭琦.极大频繁子树挖掘及其应用[J].计算机科学,2008,35(2):150-153. 被引量:4
  • 7朱颖雯,吉根林.一种高效的最大频繁Embedded子树挖掘算法[J].计算机科学,2007,34(12):175-179. 被引量:1
  • 8Backstrom L, Huttenlocher D, Kleinberg J, et al. Group formation in large social networks: Membership, growth, and evolution[C]//Proceedings of the 12th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2006:44 54.
  • 9Tantipathananandh C, Berger-Wolf T Y, Kempe D. A framework for community identification in dynamic social networks [C] // Proceedings of the 13th ACM SIGKDD Int' l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2007 : 717-726.
  • 10邹兆年,李建中,高宏,张硕.从不确定图中挖掘频繁子图模式[J].软件学报,2009,20(11):2965-2976. 被引量:32

二级参考文献67

  • 1朱永泰,王晨,洪铭胜,汪卫,施伯乐.ESPM——频繁子树挖掘算法[J].计算机研究与发展,2004,41(10):1720-1727. 被引量:18
  • 2杨沛,郑启伦,彭宏,李颖基.PFTM:一种基于投影的频繁子树挖掘算法[J].计算机科学,2005,32(2):206-209. 被引量:5
  • 3赵传申,孙志挥,张净.基于投影分支的快速频繁子树挖掘算法[J].计算机研究与发展,2006,43(3):456-462. 被引量:14
  • 4Faloutsos C,McCurley KS,Tomkins A.Fast discovery of connection subgraphs.In:Kim W,Kohavi R,Gehrke J,DuMouchel W,eds.Proc.of the 10th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2004.118-127.
  • 5Koren Y,North SC,Volinsky C.Measuring and extracting proximity in networks.In:Eliassi-Rad T,Ungar LH,Craven M,Gunopulos D,eds.Proc.of the 12th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2006.245-255.
  • 6Tong H,Faloutsos C.Center-Piece subgraphs:Problem definition and fast solutions.In:Eliassi-Rad T,Ungar LH,Craven M,Gunopulos D,eds.Proc.of the 12th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2006.404-413.
  • 7Conrad J,Gomes CP,Hoeve WJ,Sabharwal A,Suter J.Connections in networks:Hardness of feasibility versus optimality.In:Hentenryck PV,Wolsey LA,eds.Proc.of the 4th Int'l Conf.on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.Brussels:Springer-Verlag,2007.16-28.
  • 8Tong H,Faloutsos C,Koren Y.Fast direction-aware proximity for graph mining.In:Berkhin P,Caruana R,Wu X,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.747-756.
  • 9Leskovec J,Kleinberg JM,Faloutsos C.Graphs over time:Densification laws,shrinking diameters and possible explanations.In:Grossman R,Bayardo RJ,Bennett KP,eds.Proc.of the 11th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2005.177-187.
  • 10Sun J,Faloutsos C,Papadimitriou S,Yu PS.GraphScope:Parameter-Free mining of large time-evolving graphs.In:Berkhin P,Caruana R,Wu X,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.687-696.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部