期刊文献+

徐州市土地利用遥感动态监测分析 被引量:1

Study on Land Use Dynamic Monitoring by Remote Sensing in Xuzhou City
下载PDF
导出
摘要 采用1994、2001、2008年TM影像作为数据源,运用决策树分类和最小距离分类法,对徐州市城区进行土地利用分类,根据获得的土地利用现状分类图和土地利用转移矩阵,分析徐州市城区的土地利用变化情况,结果表明:(1)决策树法的分类精度要高于最小距离分类法;(2)1994-2001年,耕地迅速减少,变化去向主要是建筑用地,而建筑用地急速增加,主要变化来源是耕地和未利用地;(3)2001-2008年间,耕地继续减少,建筑用地增加,但速度明显放缓。 This paper has taken Xuzhou city as the research object,with the use of remote sensing images of years 1994,2001 and 2008 as data sources.Then through two classification methods,decision tree and minimum distance,we classify the land to five classes.According to the final status of land-use classification maps and Markov transition matrix,we analyse the land-use change of Xuzhou city.The results show that:(1) Decision trees in general,produced consistently higher classification accuracies than traditional minimum distance algorithms.(2) From 1994 to 2001,the farmland has a rapid reduction.The reduced land has mainly changed to urban construction.The land-use of urban construction has increased rapidly.(3)From 2001 to 2008,the farmland is still reduced,but the pace slow down significantly.
出处 《安徽农学通报》 2011年第9期205-207,共3页 Anhui Agricultural Science Bulletin
关键词 遥感 决策树分类 土地利用变化 徐州市城区 Remote sensing Decision tree classification Land-use change Xuzhou city
  • 相关文献

参考文献8

二级参考文献66

共引文献431

同被引文献18

  • 1魏怀东,高志海,丁峰.甘肃省民勤县土地荒漠化动态监测研究[J].水土保持学报,2004,18(2):32-36. 被引量:28
  • 2张友静,高云霄,黄浩,任立良.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006,10(2):191-196. 被引量:42
  • 3国家林业局.中国荒漠化和沙化状况公报[N].中国绿色时报,2011-1-5(1).
  • 4国家林业局.中国荒漠化和沙化状况公报[N].人民日报.2005-06-17(8).
  • 5Friedl M A, Strahler C E. Maximizing land cover classification accuracies produced by decision trees at continental to global scales[ J ]. IEEE Transactions on Geoscience Remote Sensing, 1997,37(2) :969-977.
  • 6Hanson M C, Dubayah R, DeFries R S. Classification Trees: an Alternative to Traditional Land Cover Classifiers [ J ]. Int J Re- mote Sens, 1996,17 (5) : 1075-1081.
  • 7Friedl M A, McIver D K, Hodges J C F, et al. Global Land Cov- er-Mapping from MODIS: Algorithms and Early Results[ J ]. Re- moteSens Environ ,2002,83 ( 1/2 ) :287-302.
  • 8Joy S M, Reich R M, Reynolds R T. A Non-parametric, Super- vised Classification of Vegetation Types on the Kaibab National Forest Using Decision Trees [ J]. Int J Remote Sens,2003,24 (9) :1835-1852.
  • 9Sesnie S E, Gessler P E, Finegan B, et al. Integrating Landsat TM and SRTM-DEM Derived Variables with Decision Trees for Habitat Classification and Change Detection in Complex Neotropi- cal Environments [ J ]. Remote Sens Environ, 2008,112 ( 5 ) : 2145-2159.
  • 10沈金祥,陈曦,杨辽,王杰,李宝明.额尔齐斯河-斋桑湖流域近20年来土地利用/土地覆被时空演变[J].干旱区地理,2010,33(2):189-195. 被引量:13

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部