期刊文献+

夹杂薄板扩展有限元分析

Inclusion Sheet Metal Analysis with Extended Finite Element Method
下载PDF
导出
摘要 扩展有限元法在分析不连续问题中体现了比常规有限元法的优越性,能够分析规则夹杂的应力问题.然而实际夹杂大都是不规则的,为此,本文通过引进Mum-ford-Shah模型分割不规则夹杂,利用其水平集函数跟踪不规则夹杂的边界,对于任意形状夹杂建立扩展有限元的附加函数.另外,在网格划分时,采用图像像素作为有限单元,最后列举了两个实例.计算结果表明,该方法能够分析多个任意形状夹杂的应力,与常规有限元法比较,该方法的分析结果是精确的、可行的. Extended finite element method shows more superiority than common finite element method(CFEM) in processing discontinuous problem.It can analyze regular inclusion.However,most inclusions are irregular.So this paper introduces Mumford-Shah model to divide irregular inclusions and uses level set function to track the boundary of irregular inclusions.To arbitrary shape inclusions,the enrichment function of XFEM is constituted.Moreover,in gridding division,a pixel is made as a finite element.Finally two examples are taken.The result shows that this method can analyze two or more arbitrary shape inclusions and it is accurate and feasible as CFEM.
出处 《南华大学学报(自然科学版)》 2011年第1期37-41,共5页 Journal of University of South China:Science and Technology
基金 湖南省自然科学基金资助项目(09JJ5037)
关键词 扩展有限元 水平集 C-V方法 夹杂 应力分析 extended finite element method(XFEM) level set C-V method inclusion stress analysis
  • 相关文献

参考文献10

  • 1Chang-Hung Kuo. Contact stress analysis of an elastic half-plane containing multiple inclusions [ J ].International Journal of Solids and Structures ,2008,45:4562-4573.
  • 2Yu H L, Liu X H, Li X W. FE analysis of inclusion deformation and crack generation during cold rolling with a transition layer [ J ]. Materials Letters ,2008,62 : 1595-1598.
  • 3Lin P C, Lin S H, Pan J. Modeling of failure near spot welds in lap-shear specimens based on a plane stress rigid inclusion analysis [ J ]. Engineering Fracture Mechanics ,2006,73:2229-2249.
  • 4董玉文,余天堂,任青文.直接计算应力强度因子的扩展有限元法[J].计算力学学报,2008,25(1):72-77. 被引量:27
  • 5应宗权,杜成斌,程丽.含夹杂非均质材料的扩展有限元数值模拟[J].河海大学学报(自然科学版),2008,36(4):546-549. 被引量:10
  • 6姚再兴,李世海,刘晓宇.扩展有限元方法计算多夹杂问题时圆形夹杂与四边形单元的几何关系[J].计算力学学报,2009,26(2):180-187. 被引量:2
  • 7Zhang H H, Li L X. Modeling inclusion problems in viscoelastic materials with the extended finite element method[ J]. Finite Elements in Analysis and Design,2009, 45:721-729.
  • 8Yvonnet J.He Q C,Toulemonde C. Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface [ J ]. Composites Science and Technology, 2008, 68: 2818-2825.
  • 9Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [ J ]. Int. J. Numer. Methods Eng. , 1999 ,46 : 131-150.
  • 10Chan T, Vese L. Active contours without edges [ J ]. IEEE Transactions on Image Processing, 2001,10 ( 2 ) : 266-277.

二级参考文献21

  • 1李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 2余天堂.含裂纹体的数值模拟[J].岩石力学与工程学报,2005,24(24):4434-4439. 被引量:27
  • 3MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999,46 : 131-150.
  • 4SUKUMAR N, CHOPP D L, MOES N, et al. Modeling holes and inclusions by level sets in the extended finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190 6183-6200.
  • 5应宗权,杜成斌,孙立国.基于随机骨料数学模型的混凝土弹性模量预测[J].水利学报,2007,38(8):933-937. 被引量:22
  • 6BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Method in Engineering, 1999,45 : 601-620.
  • 7MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Method in Engineering, 1999,46 : 131-150.
  • 8DOLBOW J, MOES N, BELYTSCHKO T. An extended finite element method for modeling crack growth with frictional contact[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190: 6825-6846.
  • 9MOES N,BELYTSCHKO T. Extended finite element method for cohesive crack growth [J]. Engineering Fracture Mechanics, 2002,69 : 813-833.
  • 10CHOPP D L,SUKUMAR N. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method[J]. International Journal of Engineering Science, 2003, 41:845-869.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部