期刊文献+

图像分割的算子分裂模型及算法

The Model of Image Segmentation Based on the Operator Splitting Idea and Algorithm
下载PDF
导出
摘要 将AOS、MOS算子分裂思想引入IMS图像分割模型,提出了基于AOS、AOS-MOS算子分裂思想的图像分割模型及算法,不仅提高了分割速度,对于初值、参数的选择更加灵活,而且具有一定的抗噪性,达到了好的分割效果.仿真实验验证了模型与算法的优越性. In this paper,we introduce the operator splitting idea AOS,AOS-MOS into Improved Mumford-Shan model,and then propose the segmentation methods and algorithms based on the AOS,AOS-MOS operator splitting idea.They not only increase the segmentation speed,but also are more flexible for the choice of initial value and parameter.Furthermore,the methods can resist noise,and we can get good segmentation effect with them.The simulated experiment verifies the superiority of the models and algorithms.
出处 《平顶山学院学报》 2011年第2期55-60,共6页 Journal of Pingdingshan University
基金 河南省教育厅自然科学基金(2009B110006) 河南大学校内科研基金(2008YBZR023)
关键词 水平集 图像分割 AOS AOS-MOS 算子分裂 level set image segmentation AOS AOS-MOS operator splitting
  • 相关文献

参考文献11

  • 1Tai X Ch, Chan T F. A survey on multiple level set methods with applications for identifying piecewise constant functions [ J ]. International Journal of Numerical Analysis and Modeling, 2004, 1 ( 1 ) : 25 - 47.
  • 2Burger M, Osher S J. A Survey on Level Set Methods for Inverse Problems and Optimal Design [ M ]. Los Angeles : University of California, 2004.
  • 3Osher S, Fedkiw R P. Level set methods:an overview and some recent results [ J ]. Journal of Computational Physics,2001,169 (2) : 463 - 502.
  • 4Johan Lie, Marius Lysaker, Tai X Ch. A variant of the level set method and applications to image segmentation[ M ]. Los Angeles : University of Califomia,2003.
  • 5SONG Jin-Ping LI Shuai-Jie.An Improved Mumford-Shah Model and Its Applications to Image Processing with the Piecewise Constant Level Set Method[J].自动化学报,2007,33(12):1259-1262. 被引量:1
  • 6Lu T, Neittaanmaki P, Tai X Ch. A parallel splitting up method and its application to Navier - Stoke equations [ J ]. Applied Mathematics Letters, 1991 (4) :25 - 29.
  • 7Lu T,Neittaanmaki P,Tai X Ch. A parallel splitting up method for partial differential equations and its application to Navier- Stokes equations[J]. Rairo Math Model and Numer Anal,1992,26:673 -708.
  • 8Bae E, Tai X Ch. Graph cuts for the multiphase Mumford - Shah model using piecewise constant level set methods [ C ]. NIMS : Proceedings of the National Institute for Mathematical Sciences,2008:127 -135.
  • 9Tai X Ch, Christiansen O, Lin P, et al. Image segmentation using some piecewise constant level set methods with MBO type of projection [ J ]. International Journal of Computer Vision, 2007,73 ( 1 ) : 61 - 76.
  • 10Christiansen O,Tai X Ch. Fast Implementation of Piecewise Constant Level Set Methods [ M ]. Los Angeles: University of California,2006.

二级参考文献13

  • 1Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79:12-49
  • 2Tai X C, Chan T F. A survey on multiple level set methods with applications for identifying piecewise constant functions. International Journal of Numerical Analysis and Modeling, 2004, 1(1): 25-47
  • 3Burger M, Osher S J. A Survey on Level Set Methods for Inverse Problems and Optimal Design. CAM Report 04-02, Department of Mathematica, University of California, Los Angeles, USA, 2004
  • 4Osher S, Fedkiw R P. Level set methods: an overview and some recent results. Journal of Computational Physics, 2001, 169(2): 463-502
  • 5Lie J, Lysaker M, Tai X C. A variant of the level set method and applications to image segmentation. Mathematics for Computation, 2006, 75(255): 1155-1174
  • 6Lie J, Lysaker M, Tai X C. A binary level set model and some applications for Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 2006, 15(5): 1171-1181
  • 7Lie J, Lysaker M, Tai X C. Piecewise constant level set methods and image segmentation. Lecture Notes in Computer Science, 2005, 3459:573-584
  • 8Nielsen L K, Tai X C, Aannosen S I, Espedal M. A binary level set model for elliptic inverse problems with discontinuous coefficients. International Journal of Numerical Analysis and Modeling, 2005, 4(1): 74-99
  • 9Tai X C, Li H W. A piecewise constant level set methods for elliptic inverse problems. Applied Numerical Mathematics, 2007, 57(5-7): 686-696
  • 10Tai X C, Yao C H. Fast Piecewise Constant Level Set Methods (PCLSM) with Newton Updating. CAM-Report-05-52, Applied Mathematics, University of California, Los Angeles, USA, 2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部