期刊文献+

7085铝合金热变形的流变应力行为和显微组织 被引量:25

Flow stress behavior and microstructure of 7085 aluminum alloy during hot deformation
下载PDF
导出
摘要 采用Gleeble-1500热模拟机进行热压缩实验,研究7085铝合金在变形温度为350-470℃、应变速率为0.001-1 s?1条件下的流变应力变化规律和变形后的显微组织。研究表明:7085铝合金的流变应力随应变速率增大而增大,随变形温度升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述为ε=A[sinh(ασ)]nexp(?Q/RT),也可用Zener-Hollomon参数来描述,其参数A、α、n以及热变形激活能Q分别为2.722 54×1011s?1、0.016 03 MPa?1、6.259以及176.58 kJ/mol。随着温度升高和应变速率降低,合金的主要软化机制由动态回复逐渐转变为动态再结晶。 The flow stress behavior and the deformation microstructure of 7085 aluminum alloy during hot compression deformation were studied by thermal simulation test using Gleeble-1500 thermal simulation machine,at temperature ranging from 350 ℃ to 470 ℃ and strain-rate from 0.001 s-1 to 1 s-1.The experimental results indicate that the flow stress and peak stress increase with increasing strain rate,and decrease with increasing deformation temperature,which can be described by a constitutive equation in hyperbolic sine function as A[sinh(ασ)]nexp(-Q/RT),and can also be described by Zener-Hollomon parameters,whose values of related parameters A,α,n and activation energy for hot deformation Q,are 2.722 54×1011 s-1,0.016 03 MPa-1,6.259 and 176.58 kJ/mol,respectively.With increasing the temperature and decreasing the strain rate,the main soften mechanism of the 7085 alloy transforms from dynamic recovery to dynamic re-crystallization.
出处 《粉末冶金材料科学与工程》 EI 2011年第2期225-230,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究计划(973计划)资助项目(2010CB731701) 国家科技支撑计划资助项目(2007BAE38B06)
关键词 7085铝合金 热变形 流变应力 本构关系 显微组织 7085 aluminum alloy hot deformation flow stress constitutive relationship microstructure
  • 相关文献

参考文献15

  • 1IMMARIGEON J P, HOLT R T, KOUL A K, et al. Lightweight materials for aircraft applications [J]. Materials Characterization, 1995, 35(1): 41-67.
  • 2方华婵,陈康华,巢宏,陈祥,叶登峰.Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J].粉末冶金材料科学与工程,2009,14(6):351-358. 被引量:72
  • 3HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminium alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280(1): 102-107.
  • 4WILLIAMS JAMES C, EDGAR A, et al. Progress in structural materials for aerospace systems [J]. Acta Materialia, 2003, 51(19): 5775-5779.
  • 5曹春晓.一代材料技术,一代大型飞机[J].航空学报,2008,29(3):701-706. 被引量:131
  • 6熊柏青,李锡武,张永安,李志辉,朱宝宏,王锋,刘红伟.新型高强韧低淬火敏感性Al-7.5Zn-1.65Mg-1.4Cu-0.12Zr合金[J].中国有色金属学报,2009,19(9):1539-1547. 被引量:52
  • 7林高用,张辉,郭武超,彭大暑.7075铝合金热压缩变形流变应力[J].中国有色金属学报,2001,11(3):412-415. 被引量:88
  • 8HUANG Xu-dong, ZHANG Hui, HAN Yi, et al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature [J]. Materials Science and Engineering A, 2010, 527(3): 485-490.
  • 9BANEERJEEA SANJIB, ROBIA P S, et al. High temperature deformation behavior of AI-Cu-Mg alloys micro-alloyed with Sn [J]. Materials Science and Engineering A, 2010, 527(10/11): 2498-2503.
  • 10ZHEN Liang, HU Hui-e, WANG Xin-yun, et al. Distribution characterization of boundary misorientation angle of 7050 aluminum alloy after high-temperature compression [J]. Journal of Materials Processin8 Technology, 2009, 209(2): 754-761.

二级参考文献90

共引文献403

同被引文献186

引证文献25

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部